
Probabilistic Forecasting with
Neural Networks Applied to Loss

Reserving

School of Risk and Actuarial Studies
UNSW Business School

University of New South Wales

Muhammed Taher Al-Mudafer

Under the supervision of:

Prof. Benjamin Avanzi

Prof. Greg Taylor

Prof. Bernard Wong

November 23, 2020

A thesis submitted in partial fulfilment of
the requirements for the degree of

Bachelor of Actuarial Studies (Honours)

DECLARATION

I hereby declare that this thesis submission is my own work and, to the best of my knowl-

edge, contains no materials previously published or written by another person nor material

which to a substantial extent has been accepted for the award of any other degree or

diploma at UNSW or any other educational institution, except where due acknowledgement

is made in the thesis. Any contribution made to the research by others, with whom I have

worked at UNSW or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work,

except to the extent that assistance from others in the project’s design and concept or in

style, presentation and linguistic expression is acknowledged.

Signed:

Date: 23/11/2020

i

ABSTRACT

The application of Neural Networks to Loss Reserving has seen rising popularity over the

last two years. They have showcased their versatility, flexibility and accuracy. However,

there has been little focus on distributional forecasting with Neural Networks on Loss

Triangles. Accurately quantifying the volatility of Outstanding Claims (OSC) is essential

for efficient capital allocation, liability reporting, and pricing.

This thesis applies the Mixture Density Network (MDN), a Network which focuses on

probabilistic forecasting by fitting a Mixed Gaussian to Incremental Claims data. The

MDN achieves outstanding results, outperforming the ccODP in central estimate, distribu-

tional and quantile estimate accuracy. This model was applied to a wide range of datasets

of varying complexity and specifications, excelling in all environments.

A challenge with using Loss Triangles is the little data available to partition into training,

validation and testing sets. In a machine learning framework, this thesis performed sequen-

tial data partitioning of the Loss Triangle, using the Rolling Origin Method. This partition

allowed different Network hyper-parameters to be assessed based on their projection

accuracy, allowing for the implementation of a model selection algorithm that provided

accurate and stable OSC forecasts.

The black-box nature of Neural Networks causes a risk of inaccurate projections and a lack

of justifiability of results. A GLM - MDN hybrid is developed to address this issue, the

ResMDN, which is an adaptation of the Combined Actuarial Neural Network architecture

prevalent in the Actuarial Neural Network literature. The ResMDN successfully boosted

the ccODP’s projections by correcting its structural errors, however, it under-performed

the MDN.

ii

ACKNOWLEDGEMENTS

I would firstly like to extend my sincere gratitude to my supervisors, Professor Benjamin

Avanzi, Professor Greg Taylor and Professor Bernard Wong, for their invaluable guidance

throughout the year. This thesis would not be possible at all without their input and

support throughout the year.

I would like to thank Professor Hazel Bateman for running the Research Classes, and

for her continuous effort in helping us research students succeed. I would also like to

thank the Academics at the School of Risk and Actuarial Studies for their advice and

support, in particular, Senior Lecturer Andrés Villegas, Associate Professor Anthony

Asher, Associate Professor Jonathan Ziveyi, Dr Yang Shen, Senior Lecturer Fei Huang,

Alan Xian, Guillaume Boglioni Beaulieu and Michelle Vhudjizena.

I would like to thank the Risk and Actuarial Sctudies Administration team for their

support in enrolment, data access and managing campus study, in particular, Josette

Milord, Virginia Hine and Helen Karakontis. I would also like to thank my fellow Honours

Students, Bofang Tan, Mark Lui, Yuhao Liu and Zhen Dong Chen, for their support this

year.

Finally, my deepest thanks go to my parents, Mustafa and Soha, for their unconditional

love and support. Nothing reaches fruition without their blessings.

iii

CONTENTS

1 Introduction 2

1.1 Background . 2

1.1.1 The Need to Model Outstanding Claims 2

1.1.2 Traditional Reserving Methods . 3

1.1.3 Machine Learning Models - Neural Networks 4

1.2 Motivation . 4

1.3 Research Aims and Contributions . 6

1.4 Outline of Proposal . 7

2 Literature Review 8

2.1 Traditional Loss Reserving Models . 8

2.1.1 Chain Ladder Model . 9

2.1.2 Generalised Linear Models . 10

2.2 Neural Networks . 12

2.2.1 Feedforward Neural Networks . 12

2.2.2 Training the Network . 14

2.3 Neural Network Applications to Loss Reserving 15

2.3.1 Parametric Models . 16

2.3.2 Big Data . 16

2.3.3 Residual Neural Networks - ResNet 17

iv

CONTENTS

2.4 Review of Neural Network Applications to Loss Reserving 20

2.5 Probabilistic Forecasting with Neural Networks 21

2.5.1 Bayesian Neural Networks . 21

2.5.2 Recent Developments in Literature 22

2.5.3 Mixture Density Networks - MDNs 23

2.6 Model Validation Methodologies . 24

2.6.1 Neural Network Loss Reserving Literature 24

2.6.2 Time Series Model Validation . 25

2.7 Literature Summary . 26

3 Modelling Frameworks 28

3.0.1 Problem Formulation and Solution 28

3.0.2 Notation . 29

3.1 Model Design . 30

3.1.1 Probabilistic Forecasting - Mixture Density Networks 30

3.1.2 Density of Individual Components 30

3.1.3 MDN Computations . 31

3.1.4 Mean, Variance and Quantile Estimates 33

3.1.5 Interpretability - The ResMDN . 34

3.1.6 Approximating the ccODP Model through a Mixed Gaussian 35

3.1.7 ResMDN Computations . 36

3.2 Model Development . 39

3.2.1 Assessing Projection Accuracy - Rolling Origin Model Validation . 39

3.2.2 Direct Projection Constraints . 41

3.2.3 Optimising Network Hyper-parameters 41

3.2.4 Network Hyper-parameter Selection Algorithm 44

3.2.5 Training the Network . 45

3.2.6 Fitting the Final Model . 47

3.3 Model Evaluation . 49

3.3.1 Benchmark - Cross-Classified Over-Dispersed Poisson Model 49

3.3.2 Qualitative Analysis . 50

3.3.3 Quantitative Analysis . 51

3.3.4 Objectives . 52

4 Data Analysis 54

v

CONTENTS

4.1 Simulated vs Real Data . 54

4.1.1 Simulator: SynthETIC (2020) . 55

4.2 Simulated Datasets . 55

4.2.1 Dataset 1: Simple, Short Tail Claims 56

4.2.2 Dataset 2: Shift from Long Tail to Short Tail Claims 57

4.2.3 Dataset 3: Inflation Shock at Calendar Quarter 30 58

4.2.4 Dataset 4: High Volatility . 59

5 Results 61

5.1 Stable Forecasts - Rolling Origin Model Validation 61

5.2 Probabilistic Forecasting with the Mixture Density Network 63

5.2.1 Central Estimate Analysis . 64

5.2.2 Volatility Estimate Analysis . 67

5.2.3 Quantile Estimate Analysis . 69

5.2.4 Total Reserves . 71

5.3 Interpretability: ResMDN . 73

5.3.1 Overall Performance . 73

5.3.2 Comparison to the MDN . 75

5.3.3 Interpretability of Results . 76

6 Conclusion 78

6.1 Research Summary and Contributions . 78

6.1.1 Probabilistic forecasting of Loss Reserves using Mixture Density

Networks . 79

6.1.2 Smooth, Robust and Accurate Loss Projections 79

6.1.3 MDN Interpretability through a ResNet Adaptation 79

6.2 Limitations . 80

6.3 Further Work . 80

A Computations 81

A.0.1 Proof of Lemma 3.1.1 . 81

A.1 Data Processing . 82

A.1.1 Input Data Processing . 82

A.1.2 Processing the MDN Output . 82

vi

CONTENTS

A.2 ccODP Modelling . 83

A.2.1 Fitting the ccODP . 83

A.2.2 Calculating Quantitative Metrics 84

A.3 Data Simulation . 84

A.3.1 Notation . 85

A.3.2 Dataset 1 . 85

A.3.3 Dataset 2 . 85

A.3.4 Dataset 3 . 86

A.3.5 Dataset 4 . 86

B Results 87

B.1 Dataset 1 . 87

B.1.1 Central Estimates . 87

B.1.2 Risk Margins . 87

B.2 Dataset 2 . 88

B.2.1 Adding the MSE Term . 88

B.2.2 Constraining Projections . 88

B.3 Dataset 3 . 89

B.3.1 Data Partition . 89

B.4 Dataset 4 . 91

B.4.1 Smoothing the Log Data . 91

B.4.2 Central Estimates . 94

B.4.3 Risk Margins . 94

vii

LIST OF FIGURES

2.1 The Aggregate Loss Triangle used in modelling. Paid Claims are assorted in

the grid, based on their Accident and Development periods. Given the upper

triangle, the modelling objective is to accurately predict future Outstanding

Claims, which make up the lower triangle 9

2.2 Structure of a Feedforward Neural Networks, composed of the Input, Hidden

and Output layers. 13

2.3 Structure of Neuron. A weighted sum of the previous layer’s input is passed

through an activation function, then passed to the next layer 13

2.4 ResNet structure as applied by Gabrielli et al. (2020). The embedding layer

provides the ccODP GLM parameters, while the feedforward module boosts

the GLM by adding extra terms which improve the goodness-of-fit 17

2.5 The basic structure of an MDN. It differs from standard NNs in the output

layer, which approximate the parameters for a mixed distribution (commonly

Gaussian) . 23

2.6 Fixed and Rolling Origin Validation . 26

3.1 The basic design of the Mixture Density Network (MDN). The inputs (i, j)

are the Accident and Development Quarters respectively. The outputs are

the parameters of the Mixed Gaussian distribution, α, µ, σ 30

3.2 The ResMDN design with an MDN output. The Embedding Layer converts

the input to Mixed Gaussian parameters approximating the GLM fit. The

feedforward module boosts the GLM initialisation during training. 35

viii

LIST OF FIGURES

3.3 The 2-stage partition of the triangle into training, validation and testing

sets. The first partition focuses on assessing projection, while the second

assesses the model’s ability to fit the trend of the data. 40

3.4 The training/validation partition of the Upper Triangle. The chosen MDN

design is fit on the training data and used to project claims in the Lower

Triangle . 48

4.1 A colour-coded 3D plot of Incremental claims for Dataset 1 57

4.2 A plot of the Incremental Claims of Dataset 1, for selected Accident Quarters.

Solid lines represents data in the Upper Triangle, while dashed lines represent

data in the Lower Triangle . 57

4.3 A colour-coded 3D plot of Incremental claims for Dataset 2 58

4.4 A plot of the Incremental Claims of Dataset 2, for selected Accident Quarters.

Solid lines represents data in the Upper Triangle, while dashed lines represent

data in the Lower Triangle . 58

4.5 A colour-coded 3D plot of Incremental claims for Dataset 3 59

4.6 A plot of the Incremental Claims of Dataset 3, for selected Accident Quarters.

Solid lines represents data in the Upper Triangle, while dashed lines represent

data in the Lower Triangle . 59

4.7 A colour-coded 3D plot of Incremental claims for Dataset 4 60

4.8 A plot of the Incremental Claims of Dataset 4, for selected Accident Quarters.

Solid lines represents data in the Upper Triangle, while dashed lines represent

data in the Lower Triangle . 60

5.1 Dataset 2: Plots of the overall fit of the MDN. Blue represents actual losses,

red is the MDN’s central estimate, with the black dashes representing the

MDN’s one standard deviation margin. The grey area represents the Lower

Triangle, the forecasting region. 62

5.2 Dataset 4: Plots of the overall fits of the MDN and ccODP models. Blue

represents actual losses, red is the MDN’s central estimate, with the black

dashes representing the MDN’s one standard deviation margin. The green

line is the ccODP’s central estimate. The grey area represents the Lower

Triangle, the forecasting region. 63

5.3 Dataset 2: Plots comparing the mean estimates of the MDN and ccODP

models to the empirical mean claims based on 250 simulations. The red

line represents the MDN’s central estimate, the green line represents the

ccODP’s central estimate, while the black line represents the empirical

mean of claims. The grey area represent the Lower Triangle. 64

ix

LIST OF FIGURES

5.4 Dataset 3: Plots comparing the mean estimates of the MDN and ccODP

models to the empirical mean claims based on 500 simulations. The red

line represents the MDN’s central estimate, the green line represents the

ccODP’s central estimate, while the black line represents the empirical

mean of claims. The grey area represent the Lower Triangle. 65

5.5 Boxplots displaying the MDN’s % reduction in the RMSE relative to the

ccODP for each of the 10 triangles run for Dataset 1,2,3 and 4. A positive

Reduction indicates the MDN had a lower RMSE than the ccODP for a

specific triangle. 66

5.6 Dataset 3 (Inflation Shock): Plots comparing the 25%, 75% and 95% risk

margin estimates of the MDN and ccODP models to the empirical margins

based on 500 simulations. The red line represents the MDN’s margin

estimates, the green line represents the ccODP’s margin estimate, while the

black line represents the empirical margins. The solid lines, dashed and

dotted lines represent the 25%, 75% and 95% margins, respectively. The

grey area represent the Lower Triangle. 68

5.7 Boxplots displaying the MDN’s increase in the Log Score relative to the

ccODP for each of the 10 triangles run for Dataset 1,2,3 and 4. 69

5.8 Dataset 2: Plots comparing the 25% and 75% risk margin estimates of the

MDN and ccODP models to the empirical margins based on 250 simula-

tions. The red line represents the MDN’s margin estimates, the green line

represents the ccODP’s margin estimate, while the black line represents the

empirical margins. The solid lines represent the 25% margins, while the

dashed lines represent the 75% margin. The grey area represent the Lower

Triangle. 70

5.9 Dataset 2: Plots comparing the 99.5th quantile estimates of the MDN

and ccODP models to the empirical 99.5th quantile claims based on 250

simulations. The red, green and black lines represents the MDN’s estimate,

the ccODP’s estimate and the empirical quantile respectively. The blue line

represents actual losses, while the grey area represent the Lower Triangle. . 71

5.10 Boxplots displaying the MDN’s (%) reduction in the 75% and 99.5% Quantile

Scores relative to the ccODP for each of the 10 triangles run for Dataset

1,2,3 and 4. 72

x

LIST OF FIGURES

5.11 A plot of the total reserve density estimates for all Datasets, R̂, with red

and green being the MDN’s and ccODP’s estimated densities, respectively.

For each Dataset, only one triangle is analysed for each plot. The black

curve is the empirical density of total reserves. The MDN provides more

accurate results, except for Dataset 1 . 73

5.12 Heatmaps showing the ccODP’s initial residuals in (a), calculated as

µccODPi,j − Xi,j. The ResMDN’s boosting effects, calculated as µccODPi,j −
µResMDN
i,j , are shown in (b). 75

5.13 Dataset 2: Plots comparing the mean estimates of the ResMDN, MDN and

ccODP models to the empirical mean claims based on 250 simulations. The

red line represents the ResMDN’s central estimate, the green line represents

the ccODP’s central estimate, the purple line is the MDN’s estimate, while

the black line represents the empirical mean of claims. The grey area

represent the Lower Triangle. 76

5.14 Dataset 3: Plots comparing the 25% and 75% risk margin estimates of

the ResMDN and ccODP models to the empirical margins based on 250

simulations. The red line represents the ResMDN’s risk margin estimates,

the green line represents the ccODP’s margin estimate, while the black line

represents the empirical margins. The solid lines represent the 25% margins,

while the dashed lines represent the 75% margin. The grey area represent

the Lower Triangle. 77

5.15 Boxplots displaying the ResMDN’s and MDN’s (%) reduction in the RMSE

and Quantile Scores relative to the ccODP over the 10 triangles run for

Dataset 2. The top right boxplot displays the MDN’s increase in the Log

Score relative to the ccODP. 77

B.1 Dataset 1 (simple claims): Plots comparing the mean estimates of the MDN

and ccODP models to the empirical mean claims based on 250 simulations.

The red line represents the MDN’s central estimate, the green line represents

the ccODP’s central estimate, while the black line represents the empirical

mean of claims. The grey area represent the Lower Triangle. 88

B.2 Dataset 1(simple claims): Plots comparing the 25% and 75% risk margin

estimates of the MDN and ccODP models to the empirical margins based

on 250 simulations. The red line represents the MDN’s margin estimates,

the green line represents the ccODP’s margin estimate, while the black line

represents the empirical margins. The solid lines represent the 25% margins,

while the dashed lines represent the 75% margin. The grey area represent

the Lower Triangle. 89

xi

LIST OF FIGURES

B.3 Dataset 2 (Long to Short Claims): Plots comparing the central estimates

of the MDN after an MSE term is added to the loss function. The purple

and red lines represent the MDN trained on the NLL Loss and NLL +

MSE Loss, respectively, while the blue line represents losses. The grey area

represents the Lower Triangle. 90

B.4 Dataset 2 (Long to Short Claims): Plots comparing the central estimates

of the MDN after projections are constrained. The purple and red lines

represent the unconstrained and constrained MDN, respectively, while the

blue line represents losses. The grey area represents the Lower Triangle. . . 91

B.5 Heatmaps of the 4 partitions involved in training and fitting Dataset 3

(Inflation Shock). Light Green, Dark Green and Red represent the training,

validation and testing sets, respectively. The focus of this partition is to

include training data in the latest Calendar Quarters. Partition 1 and 2 are

used for model selection, while Partition 3 and 4 are used for training the

final model. 92

B.6 Dataset 3 (Inflation Shock): Plots comparing the central estimates of the

MDN under the new and old data partitions. The purple and red lines

represent the MDN fit when trined under the old and new partitions,

respectively, while the blue line represents losses. The grey area represents

the Lower Triangle. 93

B.7 Dataset 4: The comparison of Log Incremental claims when not smoothed

(a) and when smoothed (b). 94

B.8 Dataset 4: A comparison of the MDN fit with smoothed and non-smoothed

Log Data. The purple and red lines represent the MDN fit on non-smoothed

and smoothed data, respectively. The blue lines and black dashed lines

represent the actual losses and 1 SD margin of the MDN, respectively. The

grey area represents the Lower Triangle, the forecasting region. 95

B.9 Plots comparing the mean estimates of the MDN and ccODP models to the

empirical mean claims based on 250 simulations. The red line represents

the MDN’s central estimate, the green line represents the ccODP’s central

estimate, while the black line represents the empirical mean of claims. The

grey area represent the Lower Triangle. 95

xii

LIST OF FIGURES

B.10 Plots comparing the 25% and 75% risk margin estimates of the MDN and

ccODP models to the empirical margins based on 10,000 simulations. The

red line represents the MDN’s margin estimates, the green line represents

the ccODP’s margin estimate, while the black line represents the empirical

margins. The solid lines represent the 25% margins, while the dashed lines

represent the 75% margin. The grey area represent the Lower Triangle. . . 96

xiii

LIST OF TABLES

5.1 The average score, over 10 triangles, of each quantitative metric; the RMSE,

Log Score (LS) and Quantile Scores (QS) for the 75% and 99.5% levels.

The MDN outperformed the ccODP in all Datasets and metrics when the

average is taken. 71

5.2 The percentage of triangles in which the MDN outperformed the ccODP in

that specific metric. 72

5.3 The RMSE, Log Score (LS) and Quantile Scores (QS) at the 75% and 99.5%

levels, calculated for total reserve estimates, R̂. The ccODP outperforms

for Dataset 1, but the MDN outperforms otherwise. 73

1

CHAPTER 1

INTRODUCTION

1.1 Background

Often for insurers, claims can be reported and settled long after they have been incurred

for the policyholder. Hence, in many insurance industries, the claim losses incurred by

the company for a given period does not reflect the actual total of claims incurred, as

there are some claims that have been incurred but yet to be reported, called IBNR claims,

and claims which have been incurred and reported to the insurer, but not fully settled,

called RBNS claims (Taylor, 2000). The sum of IBNR and RBNS claims make up the

Outstanding Claims (OSC) for an insurer.

1.1.1 The Need to Model Outstanding Claims

Modelling and reserving for OSC are issues central to actuarial science, for many reasons.

Firstly, insurers are required to hold reserves that meet Outstanding Claims when they

come due. OSC often forms a large portion of an insurer’s liabilities (Avanzi et al., 2016),

hence failure to hold sufficient economic capital to meet these claims can cause liquidity

issues. Due to the significance of this risk, modelling and holding sufficient reserves to meet

OSC liabilities is subject to regulation. In Australia, APRA requires General Insurers to

hold capital to meet OSC with a 75% probability of sufficiency. The Solvency II capital

test requires an OSC reserve allocation that has a 99.5% probability of sufficiency (Radtke

2

CHAPTER 1. INTRODUCTION

et al., 2016). Hence, not only is it important to find a best central estimate, but modelling

the distribution of Outstanding Claims will help gauge the volatility of these liabilities,

allowing companies to effectively allocate capital to meet their risk appetite and satisfy

regulatory requirements.

Secondly, Outstanding Claims are recorded as a liability on the balance sheet, hence

an accurate forecast of these claims will better indicate the profit and loss faced by the

insurer, as well as its solvency (Rossouw and Richman, 2019). Thirdly, modelling OSC

is important for pricing, as premiums must be set to exceed claims according to a profit

margin, meaning that the quantification of claims which have been incurred but not fully

settled is essential in understanding the true claim dynamic.

In addition to forecasting the central estimate of Outstanding Claims, modelling the

distribution is also important in liability reporting and pricing. To exercise prudence,

liabilities are often reported on the Balance sheet with a risk margin on top of the cen-

tral estimate. Quantifying the volatility of OSC will allow for these margins to be set

more accurately. Similarly, understanding the distribution of claims will assist in setting

appropriate profit margins when pricing and understanding pricing risk.

1.1.2 Traditional Reserving Methods

Many statistical models have been used today and in the past to model Outstanding

Claims (Taylor, 2019). Most models, even today, have focused on the aggregate Loss

Triangle, listing claims in a grid by accident and development period. Earlier models,

such as the Chain Ladder, introduced in the 1960s, used a simplistic algorithm to provide

a central estimate. With the lack of stochasticity provided by the Chain Ladder model

an issue, a stochastic variant, the Mack Model, was introduced, helping to quantify the

uncertainty of OSC. Other relatively simplistic models used in that time period include

the Bornhuetter-Ferguson and Cape Cod models.

As computing power improved, GLMs became common in actuarial literature, start-

ing in the 1990s. GLMs brought more flexibility in covariate, claim distribution and link

function selection, which allowed for more accurate central estimate and probabilistic

forecasting. Furthermore, interactions and external variables such as inflation could be

incorporated into the model, improving its predictive accuracy.

3

CHAPTER 1. INTRODUCTION

1.1.3 Machine Learning Models - Neural Networks

With the continual improvement in computing technology and power, more powerful and

complicated machine learning models (MLMs) have found recent applications in Loss

Reserving, such as Regression Trees (Wüthrich, 2018a) and Neural Networks Kuo (2019).

Out of these newly applied MLMs, Neural Networks (NNs) have found the most success,

both in Loss Triangle and individual claims reserving (Richman, 2018). Since 2018, the

application of Neural Networks to Loss Reserving has been gaining momentum. These new

models have shown enormous potential, modelling complex interactions between variables,

allowing them to model OSC with an accuracy that outperforms basic traditional models.

The current Loss Reserving literature applies NNs in a variety of ways. Gabrielli et al.

(2020) used a Residual Neural Network to boost a GLM model, Kuo (2019) and Poon

(2019) jointly forecast the claims counts and amounts, which improved accuracy due to the

interactions captured by these two variables. Wüthrich (2018b) used a Neural Network to

estimate Chain Ladder development factors, modelling dependence between variables such

as Line of Business, Labor Sector, age, etc. Delong et al. (2020) used six different Neural

Network to model the micro-processes of Individual Claims. These various methods of

applications have showcased the Neural Networks versatility and flexibility in design and

modelling.

Despite showing promise, several gaps have become apparent in Neural Networks and

their current implementation in the Loss Reserving literature. Firstly, there is little focus

on distributional forecasting of claims, instead primarily focusing on central estimates.

Secondly, Neural Network models are considered a black box due to their complexity,

hence are much less interpretable than traditional GLMs. As a result of their lack of

interpretability, NNs face a higher risk of unstable extrapolation (Rossouw and Richman,

2019). This weakness is exacerbated under volatile conditions, as interactions may not

continue into the projection period (Rossouw and Richman, 2019). Thirdly, the Neural

Network Loss Reserving literature doesn’t explicitly outline a methodology for testing

different models within the Upper Triangle. This risks fitting a Neural Network model

with an un-verified design, leading to a sub-optimal fit.

1.2 Motivation

The recent successful applications of Neural Networks in Loss Reserving literature makes

an exciting development in Outstanding Claims modelling. As mentioned earlier, NNs have

demonstrated their accuracy and flexibility in modelling, showing an ability to capture

4

CHAPTER 1. INTRODUCTION

complex interactions between variables and accommodate large granular datasets. A

downside of using GLMs is their user-intensive nature (McGuire et al., 2018), as it takes

time to find the right distribution, link function and covariate structure. In addition

to their potential to produce more accurate forecasts, Neural Networks can potentially

save modelling time through their flexible structure and optimisation algorithms which

automatically search for the minimum loss in a wide function space.

However, the practical and technical obstacles mentioned earlier have hindered the accep-

tance and use of Neural Networks by the actuarial community (Richman, 2018; Wüthrich

and Merz, 2019). Analysing and fixing these shortcomings and expanding the implemen-

tation of Neural Networks in the literature will increase their reliability and practicality.

This will encourage the NNs modelling power to be applied in practical Loss Reserving,

adding more models available to the actuary and improving the reserving process.

This thesis will primarily focus on distributional forecasting in a Loss Triangle set-

ting. In the current Actuarial literature, NNs are predominantly being used to provide

central estimates of Outstanding Claims. Providing distributional estimates of OSC is

important for allocating prudential economic and regulatory capital, setting appropriate

risk margins when valuing liabilities on the Balance Sheet, setting appropriate profit mar-

gins and understanding pricing risk. Just as NNs have shown promise in providing central

estimates of Outstanding Claims, focusing their modelling power on accurate probabilistic

forecasting will potentially yield ’state of the art’ results in that regard (Richman, 2018).

Apart from Kuo (2020), no paper to my knowledge has focused on attaining probabilistic

forecasts. Despite Delong et al. (2020) producing a stochastic individual model, the focus

was on attaining central estimates. However, both these articles used Individual Claims

data, hence there has been no focus on Loss Triangle distributional forecasting. As insurers

may still be restricted from accessing reliable Individual Claim records, developing a NN

model that applies to Loss Triangles is highly relevant.

Furthermore, NNs are considered a black box due to their lack of interpretability (Gabrielli,

2019). The model fits a highly complex function to the data, hence the main factors driving

a forecast, while accurate, cannot be analysed as closely as traditional GLM models. As

modelling OSC is important for reserving, analysing solvency and pricing, decisions in

these actuarial areas should be well justified to company stakeholders, such as the board

and consumers. The black box nature of NNs have slowed down their acceptance in the

Actuarial field. To increase their acceptance, Wüthrich and Merz (2019) developed the

Combined Actuarial Neural Network (CANN), which embedded a GLM into the Neural

5

CHAPTER 1. INTRODUCTION

Network architecture. This hybrid model has been applied successfully by Gabrielli et al.

(2020); Poon (2019) and Gabrielli (2019), showcasing the improved interpretability and

stability of Neural Networks. The CANN architecture acts as a bridge between GLMs

and Machine Learning models, hence it is a valuable modelling framework which will be

considered in this thesis.

Due to the NNs lack of interpretability, they are at risk of unstable extrapolation (Rossouw

and Richman, 2019). This issue is important in reserving, since the key objective is to

estimate future claims in the Lower Triangle given the Upper Triangle of claims data.

The function fit by the NN in the Upper Triangle is highly complex and as a result, the

function’s behaviour in the Lower Triangle may be unreasonable.

Adding to the volatility in Neural Network fitting, no model testing framework has

been outlined in the Neural Network Loss Reserving literature, which focuses on a Loss

Triangle setting. Neural Networks are flexible in the hyper-parameter values they can take,

hence it is vital to have a clear methodology for testing between these different models. A

lack of methodology can lead to poor hyper-parameters being set for the Network, causing

a sub-optimal fit and jeopardising the rising credibility NNs have recently built.

Combining the need for stable projections and a model testing framework, it is im-

portant to develop a partition of the Loss Triangle into training, validation and testing

sets, which assesses models based on their projection accuracy. Such a focus will increase

the probability of fitting Networks with hyper-parameters that produce stable forecasts,

which is essential in Loss Reserving. This triangle partition must be accompanied with

a systematic methodology for testing and selecting Network hyper-parameters. Such a

methodology will make Neural Network fitting more methodical, assisting in popularising

their implementation in practice.

1.3 Research Aims and Contributions

This thesis addresses a few of the gaps present in the implementation of Neural Networks

in the Loss Reserving literature. The aims and contributions of this thesis are:

1. Applying probabilistic forecasting with Neural Network on Loss Triangle Reserving.

This is done using Mixture Density Networks, a Neural Network which successfully

focused its modelling power on produce accurate distributional forecasts of Loss

Reserves.

6

CHAPTER 1. INTRODUCTION

2. Maintain the ’state of the art’ results seen in the Neural Network Loss Reserving

literature by ensuring that, despite the focus on probabilistic forecasts, the model

also produces accurate central estimates of Outstanding Claims.

3. Develop a Machine Learning model selection framework by partitioning the Loss

Triangle into training and testing sets in a way that suits the time-dependence

structure of the Loss Triangle, allowing the framework to test and select model

designs based on their projection accuracy.

4. Assist the implementation of Neural Networks in practice by adopting a more

interpretable and justifiable model, the ResMDN, while maintaining the objectives

outlines in points 1-3.

1.4 Outline of Proposal

After the Introduction in Chapter 1, Chapter 2 will explore the relevant literature in

Loss Reserving, looking at current Neural Network applications, as well as literature on

probabilistic forecasting with Neural Networks and time series model validation method-

ologies. With the knowledge obtained from the various fields in the literature, Chapter 3

outlines the modelling frameworks used to achieve the Research Aims outlines. Chapter 4

analyses the data used in this thesis, while Chapter 5 goes through the results obtained

from the modelling, and their implications. Chapter 6 concludes by summarising the

results, contributions, limitations and avenues for future research.

7

CHAPTER 2

LITERATURE REVIEW

This thesis focuses on probabilistic forecasting of Outstanding Claims using Neural Net-

works. This chapter explores the literature surrounding Neural Network in Loss Reserving

and other fields. Section 2.1 will provide a brief analysis of the traditional Loss Reserving

models, with Section 2.2 introducing the Neural Network. Section 2.3 explores in depth

the current Neural Network applications in Loss Reserving, with a subsequent review of

the strengths and gaps of these applications in Section 2.4. Building on the gaps in the

Neural Network Loss Reserving literature, Section 2.5 will explore Neural Network models

that perform probabilistic forecasting, while Section 2.6 concludes the Literature Review

by analysing Model Validation methodologies specialised for time-series data.

2.1 Traditional Loss Reserving Models

Traditional claims reserving techniques have focused on using aggregate models, mainly

the Loss Triangle (Taylor, 2019). Loss Triangles, visualised in Figure 2.1, record aggregate

transactions on a specified accident and development period, and consists of a triangular

grid of cells, with the accident period on the vertical axis and development period on

the horizontal axis. A cell of coordinates (i, j) records aggregate claims data, usually

claims paid or claims reported, for accident period i and development period j. For future

analysis of triangles, we will assume a total of I accident periods and J development

8

CHAPTER 2. LITERATURE REVIEW

periods, with I ≥ J . Common period scales used are monthly, quarterly and annually.

Figure 2.1: The Aggregate Loss Triangle used in modelling. Paid Claims are assorted in
the grid, based on their Accident and Development periods. Given the upper triangle, the
modelling objective is to accurately predict future Outstanding Claims, which make up
the lower triangle

Popular models such as the Chain Ladder were computationally inexpensive and provided

reasonable results, especially for short tail claims (Baudry and Robert, 2019). Technologi-

cal improvements allowed more computationally expensive models, such as GLMs to arise.

As Machine learning has increased in popularity, so too has Individual Claims modelling

(Delong et al., 2020). Individual Claims modelling forecasts future claim payments by

simulating micro-processes such as reporting delay, claim status, probability of payment,

payment size, recovery payments, etc. These processes are modelled accounting for in-

dividual claim features such as the Line of Business (LoB), labor sector, age of injured,

injured body part, etc.

2.1.1 Chain Ladder Model

The chain ladder model, applicable to Loss Triangles, is one of the earliest methods used

in loss reserving, its use estimated to originate around the 1960s, or even earlier (Taylor,

2019). Let Ci,j denote the cumulative payments for accidents that occurred in Accident

period i and development period less than or equal to j. The key model assumptions, as

listed by Wüthrich and Merz (2008), are as follows:

9

CHAPTER 2. LITERATURE REVIEW

1. Claims across different accident periods are independent

2. For each accident and development period i and j, the cumulative paid claims for

this category follows this formula:

E[Ci,j|Ci,j−1] = fj−1Ci,j−1,

where fj−1 =
∑I−j+1
i=1 Ci,j∑I−j+1
i=1 Ci,j−1

The intuition behind this expression of fj is explained in Taylor and McGuire (2016), which

represent the above formula as a weighted average of claim developments, for development

period j. Let us, for the calculation of fj, take fi,j as :

fi,j = Ci,j/Ci,j−1

Then fj is a volume-weighted sum of fi,j, as such:

wi,j =
Ci,j−1∑I−j
i=1 Ci,j−1

,

with fj =

I−j∑
i=1

wi,jfi,j

Today, the Chain Ladder model’s simplicity and ability to often provide reasonably ac-

curate results has seen it remain popular in practice (Wüthrich and Merz, 2008). The

chain ladder will perform reasonably well with short tail claims, but struggle with long

tail claims due to lacking data in later development periods (Baudry and Robert, 2019).

Several downsides of the model firstly involve its inability to model diagonal effects,

such as variable inflation. Changes in claims processing technology and legislation can

change claim development patterns among accident years, which the Chain Ladder model

will not capture. Secondly, the basic Chain Ladder algorithm described above isn’t a

stochastic model, providing only central estimates of future outstanding claims. How-

ever, several stochastic variants have been developed such as the Mack Model (Mack, 1993) .

2.1.2 Generalised Linear Models

Generalised Linear Models (GLMs) became popular in actuarial modelling in 1990, ac-

commodated by the increase in computational power (Taylor, 2019). In application, they

provide higher forecasting accuracy and model flexibility than traditional Chain Ladder

10

CHAPTER 2. LITERATURE REVIEW

models. Applied on Loss Triangles, the GLM assumes incremental payments, which we

will denote as Xi,j for accident period i and development period j, follow an exponential

dispersion family distribution, structured as such (Taylor and McGuire, 2016):

fXi,j(y) = exp

[
yθ − b(θ)
a(φ)

+ c(y, φ)

]
Where θ is the location parameter, φ is the dispersion parameter and b is the cumulant

function. Common distributions, such as Poisson, Gaussian, Log-Normal and Gamma fall

under this family of distributions. A link function h of a GLM dictates the relationship

between the mean of the distribution and the controlled covariates, as such:

E[Xi,j] = b′(θ)

= h−1
(p∑
k=1

xi,j,kβk
)

Where xi,j,k are covariates such as accident period, development period, inflation, opera-

tional time and interactions. Common link functions include the log-link (h(x) = log(x)),

identity (h(x) = x) and reciprocal (h(x) = 1/x) functions. Common distributions used for

Loss Triangle reserving are Poisson and Gamma (Zhou and Garrido, 2009). For example,

we consider the cross-classified Over-Dispersed Poisson (ccODP) Model (England and

Verrall, 2002). Each entry in the triangle is assumed to follow the ODP distribution as such:

Xi,j

φ
∼ Poi

(AiBj

φ

)
,

where Ai and Bj are accident period and development period effects respectively. Maxi-

mum likelihood estimation is used to estimate the GLM parameters.

GLMs offer flexibility in modelling by allowing a wide range of distributions and link

functions to fit the data. The model allows categorical and numerical covariates to be

included, which can model externalities such as inflation or interactions. Where the Chain

Ladder will fail due to factors such varying inflation, seasonality or a change in operational

time, GLMs provide the ability to add covariates to allow for these factors, improving the

fit (Taylor and McGuire, 2004). Fitting a distribution allows forecast error to be quantified

by analysing the process and parameter error resulting from the stochasticity of the fitted

distribution.

A downside of GLMs is their user intensiveness (McGuire et al., 2018). It can take

many hours to find the right combination of covariates, distribution and interactions.

11

CHAPTER 2. LITERATURE REVIEW

2.2 Neural Networks

With the further improvements in computing power, more complicated machine learning

models (MLMs) have seen applications to loss reserving in recent years. These models

have shown promising forecasting accuracy, an ability to deal with large complex data and

model non-linear interactions between variables, which basic Chain Ladder and GLMs

couldn’t model. The most popular machine learning model in actuarial Loss Reserving

literature is the Neural Network.

Neural networks (NNs) are models which attempt to simulate the human brain structure.

Richman (2018) mentions early interest in simulating biological learning in the 1940s.

Notable breakthroughs in model design came with Rosenblatt (1958) designing the artificial

neuron and Rumelhart et al. (1986) developing the back-propagation algorithm which

allowed more practical training of networks. The popularity of NNs was revived in 2006,

and are now used in regression, image classification and speech recognition, just to name

a few (LeCun et al., 2015).

Most NN applications to Loss Reserving have yielded high forecasting accuracy, bet-

ter than or equal to basic Chain Ladder, GLM and other ML models (Kuo, 2019; Rossouw

and Richman, 2019; Gabrielli et al., 2020). Many design variations of NNs exist, each

with its own specialisation. We shall define a shorthand notation of representing the

input/output of a Network. Let us say that a Network which takes input x and predicts

the response y can be written in the shorthand:

x 7→ y

2.2.1 Feedforward Neural Networks

Richman (2018) provides a thorough introduction to a standard Neural Network model,

the feedforward NN. Figure 2.2 provides a visualisation of their basic structure.

They are composed of the input, hidden and output layers. Inside each layer is an array

of neurons, with each neuron in a hidden layer being connected to each neuron in the

preceding and subsequent layers by weighted synapses. As Figure 2.3 illustrates, each

neurons takes a weighted sum of the previous output and passes it through an activation

function f , before transferring that output to the next hidden layer.

12

CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Structure of a Feedforward Neural Networks, composed of the Input, Hidden
and Output layers.

Figure 2.3: Structure of Neuron. A weighted sum of the previous layer’s input is passed
through an activation function, then passed to the next layer

Suppose there are n data points, labelled xi for i = 1, 2, 3..., n, with each point containing

p covariates, labelled xi,j, for j ∈ {1, p}. Suppose the network has L hidden layers, with d

neurons in each layer. During a forward propagation of the network, the input layer will

consist of p neurons, with the output of each input neurons being a covariate of a data

point, xi,j, for j ∈ {1, p}. The first hidden layer takes a weighted sum of neurons in the

input layer and passes it through an activation function f as shown below. Let hlk,i denote

the output of the kth neuron in the lth hidden layer when data point i is the input, and

fl be the activation function for layer l. h1
k,i, the output of nodes in the first hidden layer,

are calculated as such:

h1
k,i = f1

(
p∑
j=1

wj,k,1xi,j + b0
k

)

Where b0
k is a bias term added to each neuron in each hidden and output layer. As

13

CHAPTER 2. LITERATURE REVIEW

linear transformations are made through the weighted summation, the activation functions

should be non-linear to capture non-linearities in the data. Given L hidden layers, each

hidden layer will similarly take a weighted sum of output from the previous layer and pass

it through an activation function, producing the following output:

hlk,i = fl

(
d∑
j=1

wj,k,lh
l−1
i,j + bl−1

k

)

The output layer takes a weighted sum of the Lth hidden layer. Suppose the target

response is m dimensional, denoted by ŷi for i ∈ {1,m}. The output is produced as such:

ŷi = fL

(
d∑
j=1

wj,k,Lh
L
i,j + bLk

)
Different network configurations involving the choice of hidden layers, neurons in each

layer and activation functions can yield a different fit. Below are some common activation

functions:

• Sigmoid: f(z) = ez

1+ez

• Tanh: f(z) = e2z−1
e2z+1

• Rectified Linear Unit (ReLU): f(z) = max(0, z)

The NN model parameters are the weights carrying the output from each layer to the

next. The weights are initialised arbitrarily, as an optimisation algorithm is used to

adjust the weights iteratively to improve the goodness-of-fit. Stochastic gradient descent

(SGD) is a commonly used optimisation algorithm. The fit is measured based on a

pre-defined loss function, applied on the output layer and real responses. For producing

central estimates in a regression setting, the Mean Squared Error is a common loss function:

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2

2.2.2 Training the Network

Fitting the model involves splitting the available data into training, validation and testing

sets. A training/testing split of 90% to 10% is common, demonstrated by Noll et al. (2020).

A training/validation split of 90% to 10% is also common, demonstrated by Wüthrich

(2018b). Given the number of parameters in even a simple Neural Network, running the

14

CHAPTER 2. LITERATURE REVIEW

optimisation algorithm for too many iterations can overfit the model to the data, reducing

predictive power (Gabrielli et al., 2020). Under the above-mentioned data split, the model

is fit on the training data. At each iteration, the loss value is calculated using output

that was produced by running the validation data through the updated model, called the

validation loss.

During most training scenarios, the training loss; the loss value calculated using out-

put generated by running the training data through the model, will steadily decrease,

which is to be expected as gradient descent continues to search for a minimum (Gabrielli,

2019). The validation loss will initially decrease after each iteration, then steadily in-

crease. Given that the validation data isn’t used in training, it is a good indicator of the

model’s performance on unseen data. Hence, the steady rise of validation loss indicates

over-fitting, as the network has been optimised too closely to the training data. The

number of iterations used to train the model is then chosen to minimise the validation error.

After optimising the validation error, the model is run on the testing data, with the

fit evaluated using a suitable goodness-of-fit measure, usually the MSE or cross-entropy.

The network design is adjusted by changing the Network’s hyper-parameters, such as the

number of hidden layers, number of neurons, regularisation penalties, etc. The hyper-

parameters producing the best fit on the testing data are chosen to construct the final model.

Neural Networks are flexible in their architecture and the data they can process; be-

ing able to process numerical data, categorical data, images, text, time series (Poon, 2019)

and more. The feedforward network is a basic model relative to other complex network

architectures in use, such as LSTMs (Kuo, 2020), Convolutional and Encoder-Decoder

networks.

2.3 Neural Network Applications to Loss Reserving

The application of Neural Networks to Loss Reserving has been recent, with Mulquiney

(2006) being the earliest as of my knowledge. Their application has been focused on yielding

point estimates or boosting existent GLM models (Gabrielli et al., 2020). To my knowledge,

only Kuo (2020) has focused on providing non GLM based probabilistic forecasting of

losses. NNs have been applied to both aggregate Loss Triangles and Individual Claims,

with most documenting the superiority of their fit over basic traditional Loss Reserving

models.

15

CHAPTER 2. LITERATURE REVIEW

2.3.1 Parametric Models

Assuming aggregate claims follow a user-specified distribution, such as Poisson, Gamma

and Gaussian, the Neural Network output layer could be designed to produce estimates

of the distributional parameters. The model is then calibrated using a Deviance loss

function corresponding to the chosen distribution, such as Poisson Deviance. For example,

Wüthrich (2018b) assumes a Mack model (Mack, 1993), and optimises the loss development

factors fj,x, where x is a feature space consisting of factors such as Line of Business (LoB),

labor sector, age, etc. The ability to optimise these development factors for each set of

variables in a single Network shows the predictive power and flexibility of NNs. A standard

NN design uses the MSE metric to directly optimise the claims paid in the output layer.

This architecture was applied successfully by Kuo (2019). Rossouw and Richman (2019)

worked with granular data and assumed claims follow a Poisson distribution. Gabrielli

et al. (2020) assumed the losses follow an ODP distribution, hence their Neural Network

estimated the mean claims paid, λi,j, as such:

(i, j) 7→ λi,j

These applications served to apply traditional GLM frameworks in a Machine learning

setting, seeking to boost the GLM by capturing complex interactions within the data.

Building on existing model frameworks like the Chain Ladder and GLMs produces more

relatable and interpretable models. A downside is that the parametrisation will restrict

the Network’s output to the assumptions of traditional models and may not fully exploit

its ability to model deep interactions between variables.

2.3.2 Big Data

Neural Networks have demonstrated the ability to work with large datasets featuring many

covariates, modelling deep interactions and dependencies between them. The network uses

an embedding layer to convert categorical variables into a numerical vector. Where claims

would be separated by their Line of Business and modelled separately, Neural Networks

can efficiently accommodate variables such as Line of Business, age, Labor Sector into the

one model, increasing the data available, learning dependencies and improving the fit. This

flexibility has been demonstrated by Gabrielli et al. (2020), who learned from different

LoBs simultaneously, and Wüthrich (2018b) who used LoB, age, Labor sector and injred

body part to learn claim development factors. Both articles reported an improvement in

model accuracy from traditional models.

16

CHAPTER 2. LITERATURE REVIEW

2.3.3 Residual Neural Networks - ResNet

Residual Neural Networks (ResNet) feature skip connections, which are weight parameters

that connect non-adjacent hidden layers. The number and location of hidden layers con-

nected by a skip connection is up to the modeller. A hidden layer l connected to layer l−c in

such a way will receive output from hidden layer l−1 and l−c, producing its output as such:

hlk,i = fl

(
d∑
j=1

wj,k,lh
l−1
i,j + bl−1

k + wj,k,l−ch
l−c
i,j + bl−ck

)

While a ResNet can improve the convergence of deep networks, it has been applied for

boosting GLM models in Loss Reserving. Figure 2.4 provides a visualisation of the basic

ResNet implementation in Loss Reserving.

Figure 2.4: ResNet structure as applied by Gabrielli et al. (2020). The embedding layer
provides the ccODP GLM parameters, while the feedforward module boosts the GLM by
adding extra terms which improve the goodness-of-fit

Assume aggregate claims follow a cross-classified ODP distribution, introduced in Section

2.1.2. Consider a Neural Network with Accident Period i and Development Period j inputs,

no hidden layer and a single output estimating the ODP mean parameter λi,j, then the

network will produce output as such:

17

CHAPTER 2. LITERATURE REVIEW

λ̂i,j = f(ŵ1i+ ŵ2j),

which is a GLM. To initialise the Network with the output of a pre-fit GLM, for example,

the ccODP model, an embedding layer would convert the Accident Year and Development

Year inputs into Ai and Bj , the parameters of the ccODP model, and transfer these factors

through a weight with a value of 1 to the output layer containing an exponential activation

function, as shown below:

Embedding Layer: (i, j) 7→ (ln(Ai), ln(Bj))

Output Layer: (ln(Ai), ln(Bj)) 7→ e(ln(Ai)+ln(Bj)) = AiBj

Hence this neural network model has the ccODP fit as its initial output. Connecting a

feedforward module would incorporate a non-linear equation into the output, as such:

γNNi,j =

(
d∑
j=1

wj,k,Lh
L
i,j + bLk

)
, the output of the Feedforward module.

The non-linear term is then added to the GLM fit as a boosting term as such:

(i, j) 7→ e(ln(αi)+ln(βj))+γ
NN
i,j = αiβj ∗ eγ

NN
i,j

With the model initialising at the ccODP fit, any further training on the feedforward

module, represented by γNNi,j will improve the fit, as it captures deep interactions within

the variables.

The Residual Network embedding of a GLM model was, to my knowledge, proposed

by Wüthrich and Merz (2019), titled the Combined Actuarial Neural Network (CANN).

The CANN concept has since achieved widespread popularity in the literature due to

its ability to make use of black-box machine learning modelling without significantly

compromising the interpretability observed with GLMs (Poon, 2019; Wüthrich, 2019;

Schelldorfer and Wüthrich, 2019). This benefit aims to increase the acceptance of Neural

Networks in the Actuarial community.

In the Loss Triangle framework, the RNN architecture was applied by Gabrielli et al. (2020),

boosting a ccODP model, while Gabrielli (2019) simultaneously learned and boosted claim

amount and claim count data. These articles all recorded an improvement in fit, showing

18

CHAPTER 2. LITERATURE REVIEW

the effectiveness of boosting by using skip connections. Gabrielli et al. (2020) showed a

reduction in claims forecasting bias by 10% to 30%.

Another improvement is the increased interpretability of the model due to having a

GLM backbone to it. The final model obtained by Poon (2019) had a 71% and 54%

weighting on the initialised GLM, allowing the driving factors of the forecast to be traced

more effectively than a randomly initialised network. Furthermore, the GLM initialisation

produces more stable output than a random initialisation, as was noted by Gabrielli et al.

(2020). This is due to the initial fit being reasonable, requiring less iterations to optimise

the parameters. The issue of variable output due to random initialisations has been noted

by Kuo (2019) and Kuo (2020), which was solved by running the Network 10 times and

averaging results.

A downside in the implementation of ResNets is that the GLM distributional assumption

remains. The ODP structure used by Gabrielli et al. (2020) computes claim variance as a

function of the mean, restricting quantile estimates of claims to the mean and dispersion

parameters. Similarly for Poon (2019), the modelling power of NNs was focused on

producing central estimates of outstanding claims, rather than probabilistic forecasting.

2.3.3.1 Individual Claims Modelling

Individual Claims Modelling (ICM) has gained popularity since the development of Ma-

chine Learning models (Delong et al., 2020), but has been introduced conceptually to

the literature by Arjas (1989) and Norberg (1993). It focuses on using Individual Claims

data to model the development of claim micro-processes, such as reporting time, payment,

claim status, recoveries and settlement. Claims are commonly classified by a static feature

space, such as Line of Business, Labour Sector, age, injured body part, etc. This form

of modelling allows analysis of claim micro-processes on a more granular level, which

should improve forecasting accuracy, however, the superiority of Individual Claims hasn’t

been demonstrated conclusively in the literature (Taylor, 2019). Understanding claims

on an individual level will provide more accurate forecast in datasets where policyholder

composition shifts, such as changes in the volume of short-tail/long-tail business within a

company (Harej et al., 2017).

Individual Claims modelling has seen growing application and success in the literature

(Gabrielli, 2020; Delong et al., 2020; Kuo, 2020). For example, Delong et al. (2020) uses

six feedforward neural networks to model elements of claim development: claim status,

19

CHAPTER 2. LITERATURE REVIEW

recovery payments and paid losses, allowing for dependencies within these variables.

Long Short-Term Memory (LSTM) networks specialise in dealing with sequential in-

put data. They have seen wide usage, including speech recognition (Greff et al., 2016)

and stock market modelling (Chen et al., 2015) . Individual claims develop in a sequen-

tial manner, hence an LSTM is effective in this setting. Kuo (2020) demonstrated this,

modelling losses and recoveries based on all prior claim payment and status history. This

methodology contrasts with Delong et al. (2020), who assumed claim status and payments

follow the Markov property, thereby only using the previous month’s claim information as

input for forecasting future Individual claim development.

2.4 Review of Neural Network Applications to Loss

Reserving

A growing field of literature have applied Neural Networks to Loss Reserving and yielded

more accurate fits than basic GLM or Chain Ladder models. NNs have demonstrated their

ability to model complex non-linear interactions within the data and model with numerical

and categorical variables. While they work best with large datasets, they have proven

effective with Loss Triangles in Gabrielli et al. (2020), although the model’s stability was

aided by a GLM initialisation.

No article to my knowledge has focused on attaining distributional estimates of future

claims using Loss Triangles. Despite Delong et al. (2020) producing a stochastic individual

model, the focus was attaining central estimates. Gabrielli et al. (2020) fit a boosted

ccODP model, whose variance is restricted as a function of the mean. Furthermore, NNs

are considered a black box due to their lack of interpretability. The main factors driving

a forecast, while accurate, cannot be analysed as closely as traditional GLM models.

Vaughan et al. (2018) proposes the ”Explainable Neural Network”, which assumes the

output to follow a flexible additive model. Gabrielli (2019) and Poon (2019) used the

ResNet to provide a GLM backbone, with the NN only boosting the GLM’s residuals.

Given the success of NNs has come from their complexity, a compromise in that regard

may reduce this success. An alternative solution would be to maintain the NN complexity

and develop diagnostic tools to better understand the drivers of a Neural Network’s output,

such as Partial Dependency Plots (PDP) and Individual Conditional Expectation (ICE)

plots (Goldstein et al., 2015).

20

CHAPTER 2. LITERATURE REVIEW

Building on the issue of interpretability, time-based trends are harder to decipher with

NNs. Given reserving involves forecasting future claims, there is a risk of the network

extrapolating inaccurately into the future (Rossouw and Richman, 2019). The NN Loss

Reserving literature does not test the projection accuracy of their Machine Learning

models within the Upper Triangle, hence no comprehensive model testing and selection

framework has been implemented which works specifically within Neural Networks. In

a Loss Triangle setting, only Balona and Richman (2020) partitioned the available data

into training and testing sets, however, machine learning models were not tested in this

article. It is recommended to perform sequential data splitting to explicitly assess the

NNs time-based forecasting ability (Tashman, 2000).

2.5 Probabilistic Forecasting with Neural Networks

Several Neural Network architectures have been used for probabilistic forecasting. These

models have seen common use in areas such as hydrology (Kasiviswanathan and Sudheer,

2017), electrical load forecasting (Vossen et al., 2018) and stock market modelling (Or-

moneit and Neuneier, 1996). Applying these NN models for loss reserving would harness

the predictive power of Neural Network towards probabilistic forecasting of Outstanding

claims. Bayesian Neural Networks are the most common method of probabilistic forecast-

ing; however, non-Bayesian ensemble methods have shown promise.

2.5.1 Bayesian Neural Networks

Bayesian NNs are the most commonly applied NN model used for probabilistic forecasting

(Kasiviswanathan and Sudheer, 2017) . The model assumes the weight parameters and

output to follow a prior distribution p(w) and p(y|x,w), where x, y, w are the input, output

and weights respectively. Using Bayes rule, the posterior distribution of the weights is

calculated as such:

p(w|X) =
p(X|w)p(w)

p(X)
,

where X is the dataset provided. Samples of the posterior are taken to yield samples of

the output, providing a distribution of output y. Calculating the posterior of the weights

is analytically intractable, hence a wide class of posterior approximation algorithms have

been developed, such as MCMC, BBB, PBP and variational inferences techniques (Laksh-

21

CHAPTER 2. LITERATURE REVIEW

minarayanan et al., 2017) . Variational inference has allowed for reasonable and efficient

approximations. A simple distribution q(w) is taken as the student distribution, which

could take any interpretable form, such as Gaussian. The parameters of q are optimised

to be as close as possible to the real posterior p by minimising a divergence statistic, the

Kullback Leibler statistic being common.

DKL(P ||Q) =

∫ ∞
−∞

p(w)log

(
p(w)

q(w)

)
dw

BNNs are applicable to any Network design and can provide reasonable predictions with

small datasets. However, even with variational inference, they are still computationally

expensive (Barber and Bishop, 1998) . The success of BNNs is sensitive to the selection of

the parameter prior distribution, and given the expert input needed in hyper-parameter

specification, their ability to match non-Bayesian NNs in point forecasting accuracy isn’t

guaranteed (Jouko and Aki, 2001) .

2.5.2 Recent Developments in Literature

Due to the BNNs computational expense, Gal and Ghahramani (2016) proposed Monte

Carlo Dropout, in which dropout (a training process that randomly sets parameters to

0 during training to reduce over-fitting) was maintained when predicting on the testing

data. The stochasticity introduced by turning each parameter into a weighted Bernoulli

distribution, as shown below, approximated the BNN inference under the assumption of a

Gaussian weight posterior:

wi,j,k ∼ ŵi,j,k ∗Ber(dropout rate),

with the dropout rate being the probability of each parameter being set to zero in each

iteration of training. MC Dropout outperformed the PBP and VI posterior approximation

algorithms used in BNN and required lower computational effort.

Non-Bayesian probabilistic networks have also demonstrated potential in probabilistic

forecasting. These models have focused on using a weighted mixture of distributions

to quantify uncertainty in the output. Lakshminarayanan et al. (2017) suggested an

ensemble model, which trained several independent neural networks with different weight

initialisations. Each network assumed a Gaussian distribution of the response and had an

output layer estimating the mean and variance of the Gaussian. Each independent model

was averaged with an equal weight. While non-Bayesian models are simpler and more

22

CHAPTER 2. LITERATURE REVIEW

computationally efficient, Bayesian networks remain more popular in practice.

2.5.3 Mixture Density Networks - MDNs

Bishop (1994) introduced Mixture Density Networks (MDNs). Assume the output data

follows a mixture distribution, commonly a mixed Gaussian, as such:

f(yi|xi) =
K∑
k=1

αi,kφ(
yi − µi,k
σi,k

),

where φ(x) is the density function of a Standard Gaussian distribution. The MDN esti-

mates the αi,k, µi,k and σi,k that best approximate the real output distribution, as Figure

2.5 illustrates. MDNs are not a separate network design, they only specify the output layer,

which contains output nodes for each αk and its corresponding µk and σk. An MDN can

be applied to feedforward NNs (Zen and Senior, 2014), LSTMs (Kuo, 2020), convolutional

NNs (Iso et al., 2017) and more. The negative log likelihood loss function is used to as-

sess the goodness of fit, while a softmax layer is applied on the αk estimates so they sum to 1.

Figure 2.5: The basic structure of an MDN. It differs from standard NNs in the output
layer, which approximate the parameters for a mixed distribution (commonly Gaussian)

MDNs are simple in implementation for a probabilistic forecasting network. As mentioned

above, they are versatile in application and flexible to many network designs. Furthermore,

the choice of mixed distribution is flexible; Poisson, Gamma, Log-Gaussian distributions

(and even a variety of them in the one model) can be chosen. The network’s output

generally outperforms point forecasting Networks (Bishop, 1994), as a mean forecast can

23

CHAPTER 2. LITERATURE REVIEW

be extracted from the mixed distribution as shown below. Furthermore, the MDNs as-

sumption of heteroscedasticity (non-constant variance of the response) assists in producing

stable point forecasts, as such:

E(ŷi|xi) =
K∑
k=1

αi,kµi,k

A downside of MDNs is the increased difficulty in convergence, as noted by Hjorth and

Nabney (2000), who also expanded that singularities may exist in the loss function that

could cause the model to diverge. Kuo (2020) notes the increased difficulty in converging

a mixed Log-Gaussian distribution. Furthermore, despite mixed Gaussians being able to

approximate any distribution (Nguyen and McLachlan, 2019), the model is technically

a parametrisation of the output distribution and will hence be limited in its modelling.

Assuming more Gaussians in the mixture can alleviate this shortcoming, but at increased

complexity.

2.6 Model Validation Methodologies

2.6.1 Neural Network Loss Reserving Literature

The majority of Neural Network literature in the Loss Reserving field use the Upper

Triangle only for training and validation. In the literature, there is no comprehensive

partitioning of the Loss Triangle into training, validation and testing sets. Hence, a

framework for testing and selecting different Neural Network designs within the Upper

Triangle is lacking. The implementation of Machine Learning models in practice will

require a framework that partitions the Upper Triangle and allows the out-of-sample

testing of different designs.

Several notable model validation methodologies were employed. Wüthrich (2018b) per-

formed a random 90/10 training/validation split on the upper triangle. This split risks

unstable projections, as the model trained hasn’t been tested on data in future calendar

years. Rossouw and Richman (2019) and Kuo (2019) mitigate this risk by using the latest

calendar years of the triangle for validation. Gabrielli et al. (2020) partitions Individual

Claims data into training and validation sets before aggregation. Balona and Richman

(2020) performs sequential partitioning of the Loss Triangle, however only applies this

methodology to test Traditional Loss Reserving models.

24

CHAPTER 2. LITERATURE REVIEW

Following the methodology of Gabrielli et al. (2020) requires Individual Claims data,

which would limit the applicability of the proposed thesis. Otherwise, there is no compre-

hensive partition of the Loss Triangle described in the literature. Using testing data inside

the Upper Triangle that is unseen during training will provide a more reliable measure of

projection accuracy.

2.6.2 Time Series Model Validation

Given the focus of predicting future losses, the Loss Triangle can be viewed as a set of

time series, one for each accident period. Studying time series fitting methodologies will

assist in finding ways to test different Neural Network models.

Traditional Cross-Validation (Taylor and McGuire, 2016) approaches to model valida-

tion involve splitting the data into K sections. The model is fit on K − 1 sections

and evaluated on the test data (the remaining section). This process is repeated K

times, using each section as the test data once. The residual error is averaged from each

fit, to yield the Cross-Validation (CV) error. A model with the lowest CV error is preferred.

Cross-Validation measures a model’s predictive power on unseen data. Bergmeir and

Beńıtez (2012) point out that the validity of this method will break down for time-series

analysis, due to time dependencies within the data sequence and the lack of future forecast-

ing involved. As argued by Tashman (2000), data splitting should be done in chronological

order, ie, training data preceding validation data and validation data preceding testing

data. Tashman (2000) analyses fixed and rolling origin model evaluation techniques,

commonly used in time series analysis.

Fixed origin validation assumes a fixed training, validation and testing partition, done in

chronological order as mentioned above. Rolling origin is similar to the cross validation

methodology. It involves a chronological partition of data, similar to fixed origin validation.

It differs in that multiple partitions are made; the initial partition uses only the earlier

portion of data. In subsequent partitions, the training data is progressively expanded until

all data is used. The testing loss is the sum of the loss in all testing data used throughout

the fitting process. Balona and Richman (2020) just recently applied the Rolling Origin

methodology to the Loss Triangle, showcasing its effectiveness in model selection. Figure

2.6 visualises these methodologies.

25

CHAPTER 2. LITERATURE REVIEW

Figure 2.6: Fixed and Rolling Origin Validation

While fixed origin validation is simpler to implement, it will require a large forecasting

period to be feasible, especially in the Loss reserving setting where the forecasting period

is equal in size to the data available. A larger test set partition will reduce the training

data used for fitting, leading to more volatile forecasts. Rolling origin maximises the

use of training and testing data, with earlier partitions using more testing data to assess

the projection accuracy of the model, while later partitions assess the model’s ability to

capture trends in the dataset.

2.7 Literature Summary

Loss Reserving is an issue central to actuarial science. Traditional Loss Reserving models,

such as the Chain Ladder and GLMs, have been used reliably to model Outstanding

Claims. Neural Networks have recently seen an increase in application to Loss Reserving

and have demonstrated high versatility, flexibility and accuracy, out-performing basic

benchmarks such as the Chain Ladder and ccODP models.

Current gaps which exist in the implementation of Neural Networks in the literature

are hindering their potential, such as the lack of probabilistic forecasting, lack of inter-

pretability and unstable extrapolation. The literature analysed outside the actuarial field

regarding probabilistic forecasting with Neural Networks and Time Series Model Validation

provided valuable models and methodologies, which have successfully tackled the gaps

identified in Neural Network Loss Reserving.

Several Network architectures provide probabilistic forecasts, which are used in prac-

tice, such as Bayesian Networks and Mixture Density Networks. The works of Gabrielli

et al. (2020) and Poon (2019) have already attempted to tackle the lack of interpretability

26

CHAPTER 2. LITERATURE REVIEW

through the ResNet, which has shown promising results in achieving high performance

and bridging the gap between GLMs and Neural Networks. Time series validation method-

ologies, such as the fixed and rolling origin methods, are specifically designed to deal with

sequential data and assess models based on their projection accuracy, and have been used

in Neural Network modelling successfully.

Chapter 3 combines the knowledge acquired from the literature of all fields and develops

the modelling frameworks that applies probabilistic forecasting with Neural Networks to

Loss Triangles.

27

CHAPTER 3

MODELLING FRAMEWORKS

This chapter builds the modelling frameworks which will help achieve the Research Aims

set out in Section 1.3. Section 3.1 explains in detail the model designs which will be used

to perform probabilistic forecasting and achieve interpretability (the MDN and ResMDN

models). Section 3.2 explains how the model designs will be developed, in terms of

fine-tuning the Network’s hyper-parameters, performing the Rolling Origin data partition

that allows assessment of a model’s projection accuracy, to technical details surrounding

the model’s training and fitting.

Section 3.3 concludes with a model evaluation framework designed to assess the accuracy

of the proposed Network models. The ccODP benchmark is set, along with qualitative

and quantitative metrics that will be used to compare models to the ccODP. A set of

objectives will be used as guidelines in determining the success of models.

3.0.1 Problem Formulation and Solution

It is important to note that this thesis will focus on Loss Triangle Reserving, hence

any further analysis and modelling will be conducted from this framework. Gathering

all information obtained from the Literature Review (Chapter 2), we find that several

shortcomings exist in the implementations of Neural Networks in Loss Reserving, which

are hindering their application in practice and the fulfilment of their potential. This

28

CHAPTER 3. MODELLING FRAMEWORKS

thesis aims to fix some of these shortcomings, helping to increase the acceptance of Neural

Networks in actuarial practice. The shortcomings that will be addressed are:

1. The lack of focus on distributional forecasting with Neural Networks for Loss

Triangle Reserving. While articles indirectly assume Incremental Claims to follow a

distribution through using loss functions such as the MSE (homoscedastic Gaussian

distribution) or the Poisson deviance (Poisson distribution), no Neural Network has

been applied which focuses its modelling power on finding the right distribution.

2. No comprehensive model testing and selection framework has been developed for

Loss Triangles, to my knowledge. Balona and Richman (2020) did implement such

a method, but only to select between Traditional Reserving models, not Machine

Learning models. Such a model selection framework needs to partition the Loss

Triangle into training, validation and testing sets, in order to allow systematic

comparison between different Network designs.

Probabilistic forecasting was conducted using the Mixture Density Network (Section 3.1.1),

while the Rolling Origin Model Validation Method (Section 3.2.3) was used to partition

the data and assess different models. The issue of interpretability was addressed, but not

extended conceptually beyond the ResNet framework developed by Wüthrich and Merz

(2019) and applied by Gabrielli et al. (2020); Gabrielli (2020); Poon (2019); Schelldorfer

and Wüthrich (2019).

3.0.2 Notation

• Let Φ(x|µ, σ) = P (Z ≤ x), where Z ∼ N(µ, σ)

• Let φ(x|µ, σ) = dΦ(x|µ,σ)
dx

, that is, φ(x|µ, σ) is the probability density function of a

Gaussian variable with mean µ and standard deviation σ.

• Let Xi,j be the Incremental Claims paid in Accident period i and Development

period j.

• Let X̂i,j be a random variable which a model predicts to be the distribution of Xi,j.

29

CHAPTER 3. MODELLING FRAMEWORKS

3.1 Model Design

3.1.1 Probabilistic Forecasting - Mixture Density Networks

Mixture Density Networks (MDNs) were used to perform probabilistic forecasting of

Outstanding Claims. This network assumes that output follows a Mixed Gaussian, as

Equation (3.1) shows. The MDN’s inputs are be the Accident and Development Quarters,

(i, j), while the outputs are the parameters of the mixed distribution, (α,µ,σ), which

are used as parameters for a Mixed Gaussian density. Figure 3.1 provides a visualisation

MDN’s design. A Negative Log Likelihood (NLL) loss function is used to measure the

MDN’s goodness-of-fit, shown in Equation (3.2).

Figure 3.1: The basic design of the Mixture Density Network (MDN). The inputs (i, j)
are the Accident and Development Quarters respectively. The outputs are the parameters
of the Mixed Gaussian distribution, α, µ, σ

fX̂i,j(x) =
K∑
k=1

αk,i,jφ(x|µi,j,k, σi,j,k) (3.1)

NLLLoss(X, X̂|w) = − 1

|X|
∑

i,j:Xi,j∈Train

ln(fX̂i,j(Xi,j|w)) (3.2)

3.1.2 Density of Individual Components

During modelling, both Mixed Gaussians and Mixed Log-Gaussians were fit to Incremental

Claims, Xi,j. A Mixed Log-Gaussian can be fit to Xi,j by fitting a Mixed Gaussian to

30

CHAPTER 3. MODELLING FRAMEWORKS

ln(Xi,j), as Lemma 3.1.1 outlines.

Lemma 3.1.1 Let Y and X = ln(Y) be random variables. Suppose that X follows a

Mixed Gaussian distribution with parameters (α,µ,σ), such that:

fX(x) =
K∑
k=1

αkφ(x|µk, σk)

Then Y follows a Mixed Log-Gaussian distribution with parameters (α,µ,σ), such that:

fY (y) =
1

y

K∑
k=1

αkφ(ln(y)|µk, σk)

Proof: See Appendix A.0.1

3.1.3 MDN Computations

Input:

The input variables of the MDN are i and j, the Accident and Development Quarters, re-

spectively. Suppose there are N data points in the training set, (in, jn), for n = 1, 2, 3, ..N .

The input will be normalised, see the Appendix A.1 for more details.

Hidden Layers:

The input variables (in, jn) are fed individually into the first hidden layer through weight

parameters. Each node in that layer takes a weighted sum of in and jn, adds an intercept

term (known as the bias), before applying an activation function to that weighted sum.

Let the output of the pth node in the first hidden layer for data point n be denoted by

z1
p,n. Furthermore, let w1,p and w2,p be the weight parameters connecting the input i and

the input j to the pth node, respectively. z1
p,n is calculated following Equation (3.3):

z1
p,n = f1(inw

1
1,p + jnw

1
2,p + b0

p), (3.3)

where f1 is the activation function of the first layer and b0
p is the bias term applied to

that node. Let there be L hidden layers in the MDN. Each node in a hidden layer takes

a weighted sum of the output of all nodes in the preceding layer and an interpect term

(bias), before passing it through an activation function. Let the output of the pth node

in the lth hidden layer for data point n be denoted by zlp,n. Let there be D nodes in the

l − 1th layer. Let wla,b be the weight parameter connecting the ath nodes in hidden layer l

to the bth nodes in hidden layer l + 1. zlp,n is calculated following Equation (3.4):

31

CHAPTER 3. MODELLING FRAMEWORKS

zlp,n = fl(
D∑
d=1

wl−1
d,p zl−1

d,n + bl−1
p) (3.4)

For data point n, the output of node p in the final hidden layer, L, is similarly calculated

following Equation (3.5):

zLp,n = fL(
D∑
d=1

wL−1
d,p zL−1

d,n + bL−1
p) (3.5)

In this thesis, through initial modelling, the sigmoid activation function, shown in Equation

(3.6), gave the best results, hence was used throughout this thesis for all hidden layers.

fl(z) = Sigmoid(z) =
1

1 + e−z
for l = 1, 2, 3, ...L− 1 (3.6)

Output Layer:

The output layer is split into three section, each with K nodes, K being the number of

components in the Mixture Density. Let’s call these section the alpha, mu and sigma

sections. Similarly to the hidden layers, each node in the output layer takes a weighted

sum of the output of all nodes in the last hidden layer, Layer L. The weighted sums are

then passed through different activation functions for each section to yield the final output

of the MDN, (α,µ,σ). Denote zαk,n as the output of the kth nodes of the alpha section,

for data point n. Similarly define zµk,n and zσk,n for nodes in the mu and sigma sections,

respectively. Let wL,αd,k , w
L,µ
d,k , w

L,σ
d,k be the weights connecting the output of node d in layer

L to node k in the alpha, mu and sigma layers, respectively. These nodes in each of these

3 output layers are calculated following Equations (3.7, 3.9, 3.11), while the final output

parameters, (α,µ,σ), are calculated following Equations (3.8, 3.10, 3.12) :

Alpha:

zαk,n =
D∑
d=1

wL,αd,k zLk,n + bL,αk , for k = 1, 2, ..K (3.7)

αk,n =
ez
α
k,n∑K

k=1 e
zαk,n

(3.8)

Mu:

zµk,n =
D∑
d=1

wL,µd,k zLk,n + bL,µk , for k = 1, 2, ..K (3.9)

µk,n = zµk,n (3.10)

32

CHAPTER 3. MODELLING FRAMEWORKS

Sigma:

zσk,n =
D∑
d=1

wL,σd,k zLk,n + bL,σk , for k = 1, 2, ..K (3.11)

σk,n = ez
σ
k,n (3.12)

As the formulas above showed, the output of the alpha layer, zαk,n, is passed through a

Softmax activation function, which ensures that
∑K

k=1 αk,n = 1. The output of the mu

layer has no activation function, hence µk,n = zµk,n. The sigma output is passed through

an exponential function, following Hjorth and Nabney (2000), which ensures the standard

deviation is always positive.

Hence, for each input cell (i, j), a unique combination of parameters,

(αi,j,1, αi,j,2.....αi,j,K , µi,j,1, µi,j,2.....µi,j,K , σi,j,1, σi,j,2.....σi,j,K),

is produced in the output layer of the MDN, which then generates the probability distri-

bution for X̂i,j shown in Equation (3.13):

fX̂i,j(x) =
K∑
k=1

αi,j,kφ(x|µi,j,k, σi,j,k) (3.13)

3.1.4 Mean, Variance and Quantile Estimates

3.1.4.1 Mixed Gaussian

If a Mixed Gaussian is fit to the raw data, then

fX̂i,j(x) =
K∑
k=1

αi,j,kφ(x|µi,j,k, σi,j,k), (3.14)

for which the mean and variance can be calculated as following:

• E[X̂i,j] =
∑K

k=1 αi,j,kµi,j,k

• V ar(X̂i,j) =
∑K

k=1 αi,j,k(σ
2
i,j,k + µ2

i,j,k) − E[X̂i,j]
2

33

CHAPTER 3. MODELLING FRAMEWORKS

Let X̂i,j,q be the qth quantile estimate of Xi,j . The quantile estimate is estimated such

that X̂i,j,q ≈ F−1

X̂i,j
(q), where

FX̂i,j(x) =
K∑
k=1

αi,j,kΦ(x|µi,j,k, σi,j,k) (3.15)

3.1.4.2 Mixed Log-Gaussian

If a Mixed Log-Gaussian is fit, that is, a Mixed Gaussian is fit to the Log of X, then

fln(X̂i,j)
(x) =

K∑
k=1

αi,j,kφ(X̂i,j|µi,j,k, σi,j,k),

and the following properties can be calculated:

• E[X̂i,j] =
∑K

k=1 αi,j,ke
µi,j,k+0.5∗σi,j,k

• V ar(X̂i,j) =
∑K

k=1 αi,j,ke
σ2
i,j,ke2µi,j,k+σ2

i,j,k − E[X̂i,j]
2

Let ˆln(Xi,j)q be the qth quantile estimate of ln(Xi,j). Since ln(X̂i,j) follows a Mixed

Gaussian distribution, calculating ˆln(Xi,j)q follows the same process as Equation (3.9).

Let X̂i,j,q be the qth quantile estimate of Xi,j, then

X̂i,j,q = eln(X̂i,j)q (3.16)

3.1.5 Interpretability - The ResMDN

The Mixture Density Network (MDN) has even greater computational complexity than

the standard feedforward Neural Network, hence its interpretability is even lower. To im-

plement a more interpretable structure, this thesis adapts the ResNet design implemented

successfully by Gabrielli et al. (2020), Gabrielli (2019) and Poon (2019), boosting GLM

models while producing a more interpretable and stable model. See Section 2.3.3 for a

detailed explanation of how the ResNet functions. In this thesis, the ResNet design was

adapted to the MDN to create the ResMDN. The ResMDN uses a skip connection, applied

in the form of an Embedding Layer, to connect the input layer directly to the output layer.

A GLM is approximated by a Mixed Gaussian, the parameters of which are generated by

the Embedding Layer and passed to the output layer. This configuration initialises the

34

CHAPTER 3. MODELLING FRAMEWORKS

ResMDN with the results of a GLM approximation. A Neural Network module connected

to the ResMDN is trained on the residuals of the GLM approximation, capturing structure

which the GLM missed and feeding it to the output, hence boosting the GLM. Figure 3.2

illustrates the design and implementation of the ResMDN.

Figure 3.2: The ResMDN design with an MDN output. The Embedding Layer converts
the input to Mixed Gaussian parameters approximating the GLM fit. The feedforward
module boosts the GLM initialisation during training.

The implementation of the ResMDN closely followed the methodology demonstrated by

Gabrielli et al. (2020). The ResMDN embeds an approximation of the Cross-Classified

Over-Dispersed Poisson (ccODP) model (see Section 3.3.1 for more detail), which follows

this distribution outlined in Equation (3.17):

X̂i,j

φ
∼ Poi

(
AiBj

φ

)
(3.17)

3.1.6 Approximating the ccODP Model through a Mixed Gaus-

sian

Since the output of the ResMDN takes the form of parameters for a Mixed Gaussian

distribution, the GLM embedding must also be in the form of Mixed Gaussian parameters.

35

CHAPTER 3. MODELLING FRAMEWORKS

Hence, the ccODP fit is approximated by a Mixed Gaussian, as shown in Equation (3.18):

fX̂ccODP
i,j

(x) ≈
K∑
k=1

αGLMi,j,k φi,j,k(x, µ
GLM
i,j,k , σ

GLM
i,j,k), (3.18)

where:

• fX̂ccODP
i,j

(x) is the distribution of Xi,j estimated by the ccODP model, that is,

X̂ccODP
i,j

φ
∼ Poi

(
AiBj
φ

)
• αGLMi,j,k = 1

K

• µGLMi,j,k = E[X̂ccODP
i,j] = AiBj

• σGLMi,j,k =
√
V ar[X̂ccODP

i,j] =
√
φAiBj

Equation (3.18) approximates the ccODP distribution of a Gaussian distribution, spread

evenly over K components.

3.1.7 ResMDN Computations

Input Layer:

The Input Layer of the ReMDN consists of the Accident and Development Quarters,

(i, j), as well as an integer, ci,j = 40 ∗ (i − 1) + j, which is fed as a categorical input

to the network. Each cell (i, j) is assigned a unique ci,j, which acts as a categorical

identifier of that cell. An embedding layer takes the categorical input ci,j and pro-

duces as output

(
ln(αGLM

i,j),µGLM
i,j , ln(σGLM

i,j)

)
. Those parameters will be concatenated

with output from the last Neural Network hidden layer and transformed with the out-

put layer activation functions to produce the final output Mixed Gaussian parameters

(αResMDN ,µResMDN ,σResMDN).

Embedding Layer:

The Embedding Layer maps categorical input to an n-dimensional numerical vector. It is

the driving factor behind the success of Kuo (2019) and Gabrielli (2019) in learning from

multiple triangles simultaneously, since it converts categorical variables into numerical

output, allowing them to be run in the same Network simultaneously. The Embedding

Layer weights are pre-set to provide a mapping as shown in Equation (3.19):

Embedding Layer: ci,j 7→
(
ln(αGLM

i,j),µGLM
i,j , ln(σGLM

i,j

)
(3.19)

36

CHAPTER 3. MODELLING FRAMEWORKS

The Log of the α and σ parameters are produced in the embedding layer, since the

Softmax and exponential Activation functions will take the exponent in the output layer

nodes.

Neural Network Module:

A feedforward Neural Network module also connects the input and output layers, capturing

interactions which the GLM may have missed. The output generated by the module

follows Equation (3.26). Note that the Softmax and exponential activation functions are

excluded from this module, as the Embedding and Neural Network modules must be added

before those activations are performed.

The computations performed in the Neural Network layer are identical to the calcu-

lations performed in Equations (3.3-3.5, 3.7,3.9,3.11) for the MDN. Let wLd,k and bLk be

defined similarly to Equations (3.7,3.9,3.11). Let zαi,j,k be the weighted sum of output

from the Lth hidden layer of the Neural Network module with input (i, j), which forms

the kth α component. Similarly define zµi,j,k and zσi,j,k. Let there be D nodes in the Lth

hidden layer. The Neural Network module produces output following Equations (3.20-3.22):

zαi,j,k =

(
D∑
d=1

wL,αd,k zLi,j + bL,αk

)
, for k = 1,2,..K (3.20)

zµi,j,k =

(
D∑
d=1

wL,µd,k zLi,j + bL,µk

)
, for k = 1,2,..K (3.21)

zσi,j,k =

(
D∑
d=1

wL,σd,k zLi,j + bL,σk

)
, for k = 1,2,..K (3.22)

For simplicity, we let:

ln(αNNi,j,k) = zαi,j,k (3.23)

µNNi,j,k = zµi,j,k (3.24)

ln(σNNi,j,k) = zσi,j,k (3.25)

Hence the Neural Network module performs the process as described in Equation (3.26):

Neural Network Module: (i, j) 7→
(
ln(αNN

i,j),µNN
i,j , ln(σNN

i,j)

)
(3.26)

37

CHAPTER 3. MODELLING FRAMEWORKS

Addition:

The output from the Embedding and Neural Network Layers are added together element-

wise, as described in Equations (3.27-3.29):

(
ln(αGLMi,j,k), µGLMi,j,k , ln(σGLMi,j,k), ln(αNNi,j,k), µ

NN
i,j,k, ln(σNNi,j,k)

)
(3.27)

7→
(
ln(αGLMi,j,k) + ln(αNNi,j,k), µ

GLM
i,j,k + µNNi,j,k, ln(σGLMi,j,k) + ln(σNNi,j,k)

)
(3.28)

=

(
ln(αResMDN

i,j,k), µResMDN
i,j,k , ln(σResMDN

i,j,k)

)
(3.29)

Final Activations:

The added variables are then passed through the activation functions of the final output

layer. The α parameters are passed through a Softmax, while the σ parameters are passed

through an exponential activation, as shown in Equations (3.30,3.31).

(
ln(αResMDN

i,j,k), µResMDN
i,j,k , ln(σResMDN

i,j,k)

)
7→

(
eln(αResMDN

i,j,k)∑K
k=1 e

ln(αResMDN
i,j,k)

, µResMDN
i,j,k , eln(σResMDN

i,j,k)

)
(3.30)

=
(
αResMDN
i,j,k , µResMDN

i,j,k , σResMDN
i,j,k

)
(3.31)

Hence the Mixed Gaussian parameters are produced in the Output Layer.

Initialisation:

At the beginning of training, the parameters (wL,bL), used in Equations (3.20-3.22), are

initialised at 0, such that:

• ln(αNN),µNN ,σNN = 0

• αResMDN
i,j,k = αGLMi,j,k

• µResMDN
i,j,k = µGLMi,j,k

• σResMDN
i,j,k = σGLMi,j,k

Hence producing the GLM approximation in the Output Layer at the initialisation of the

ResMDN. During training, the Embedding Layer maintains constant output, while the

Neural Network module adjust its weights to capture non-linearities which the GLM has

missed. The ResMDN’s output at the termination of training is shown in Equations (3.32,

38

CHAPTER 3. MODELLING FRAMEWORKS

3.33):

(i, j, ci,j) 7→

(
αGLMi,j,k αNNi,j,k∑K
k=1 α

GLM
i,j,k αNNi,j,k

, µGLMi,j,k + µNNi,j,k, σ
GLM
i,j,k σNNi,j,k

)
, for k = 1, 2, ..., K (3.32)

=
(
αResMDN
i,j,k , µResMDN

i,j,k , σResMDN
i,j,k

)
, for k = 1, 2, ..., K (3.33)

The NN boosting terms are relatively easy to analyse in relation to the GLM fit, especially

the mean and volatility terms. Furthermore, the black box Neural Network modelling

is only applied to the residuals, meaning the lack of interpretability is restricted to that

domain only. Hence the ResMDN improves the interpretability of the model. As mentioned

before, the GLM backbone in this model increases the stability of model convergence and

output.

3.2 Model Development

3.2.1 Assessing Projection Accuracy - Rolling Origin Model Val-

idation

The Neural Network Loss Reserving literature doesn’t outline an explicit training/testing

partition of the Loss Triangle, meaning that no framework has been provided for testing

and selecting different Network designs. The accuracy of the Neural Network depends

heavily on its hyper-parameters, such as the number of hidden layers, number of neu-

rons, weight regularisation penalty, etc. Therefore, to assume that one model design

will work well in all environments will lead to sub-optimal performance. This thesis

partitions the Loss Triangle into training,validation and testing sets, allowing for a system-

atic hyper-parameter fine-tuning algorithm to be implemented (See Section 3.2.2 and 3.2.3).

The Loss Triangle has the characteristics of a time series, with the claims paid gen-

erally decaying over successive development periods. Where the objective of modelling is

to improve interpolation accuracy, randomly splitting the data into training, validation and

testing sets is common and sufficient. With Loss Triangles, the objective is extrapolation,

hence the testing set needs to focus on assessing the model’s projection accuracy. This is

done by assigning the latest calendar periods of the triangle to the testing set and the

earliest to training. Similarly, the Validation set is chosen to be the latest calendar periods

which aren’t assigned for testing. That way, when combined with Early Stopping (see

Section 2.2.2), the MDN stops training when short term projection accuracy is maximised.

39

CHAPTER 3. MODELLING FRAMEWORKS

(a) Partition 1 (b) Partition 2

Figure 3.3: The 2-stage partition of the triangle into training, validation and testing sets.
The first partition focuses on assessing projection, while the second assesses the model’s
ability to fit the trend of the data.

Hence it is important to sequentially split the data into training, validation and testing

sets to more effectively assess the model’s accuracy when extrapolating. The Rolling

Origin Validation Method was used (Tashman, 2000) in two stages:

• In the first stage, the testing data is comprised of a larger number of the later

calendar periods, at the expense of training periods. This partition will focus on

assessing the modelâs accuracy when projecting into the Lower Triangle. A downside

is reduced training data, especially since the later calendar periods contain valuable

insight into future claim trends.

• The second stage will provide more calendar periods for the training set at the

expense of the testing set. This partition will assess the modelâs accuracy when

using almost the entirety of the triangle and how well it captures trends in the whole

dataset.

The validation data included the 4 latest non-testing calendar periods, excluding the first

3 Accident and Development periods. This exclusion was done to provide the MDN more

training data for the latest Accident and Development periods. Excluding DQ2 and DQ3

points from the validation set reduced the MDN’s attention towards accurately projecting

claims in those development periods. Hence, points from DQ2 and 3 in earlier AQs were

added to the validation sets, helping to maintain as much training data for the later AQs

as possible. Figure 3.3 visualises the data partitions.

40

CHAPTER 3. MODELLING FRAMEWORKS

3.2.2 Direct Projection Constraints

This thesis implemented a mechanism for directly constraining central estimates of cells in

the Lower Triangle, thereby directly controlling projections made by the MDN. The user

can place upper and lower bounds on the central estimates of any desired set of cells (i, j)

in the Lower Triangle and penalising the MDN if its central estimates fell outside those

boundaries.

Let C be the set of cells (i, j) in the Lower Triangle, which have had constraints placed on

their projections. Let CLower
i,j and CUpper

i,j be the lower and upper constraints of the central

estimates for cell (i, j). The loss function during training becomes as such:

NLLLoss(X, X̂|w) = − 1

|X|
∑

i,j:Xi,j∈Train

ln(fX̂i,j(Xi,j|w))

+ λC
∑

i,j:(i,j)∈C

[max(0, µ̂i,j − CUpper
i,j)]2 + [max(0, CLower

i,j − µ̂i,j)]2

Where λC is a constraint violation penalty coefficient. The constraints apply a square

distance penalty to the loss function if the central estimate of constrained cells in the

Lower Triangle violate the constraints. With a sufficiently high penalty coefficient, the

MDN’s projection will satisfy the constraints specified, providing projections that are more

reasonable.

3.2.3 Optimising Network Hyper-parameters

As mentioned earlier, Neural Networks have demonstrated their flexibility in design and

implementation. Different model designs will yield a different accuracy of fit, hence different

model architectures will be tested, with the one leading to the lowest testing error being

chosen. Section 3.5 will explain in detail how the testing error is calculated for each model.

The following hyper-parameters will be tested in finding the best performing architecture.

1. Weight Regularisation

L2 regularisation is commonly imposed on the Network’s weights to reduce the model’s

flexibility, which reduces over-fitting. Large weights can cause large fluctuations in the

output under slightly differing inputs (Reed and Marks, 1999), which will cause projections

to become unstable. Having a small dataset also encourages over-fitting, since a wider

range of functions can be fit with a deceptively low test error, which in reality project

inaccurately on unseen data. Despite the Loss triangle containing 820 data points, it is

still considered a small dataset in the Neural Network setting, which further necessitates

41

CHAPTER 3. MODELLING FRAMEWORKS

the need for regularisation.

Datasets with a simpler trend will generally require more regularisation in order to

penalise unnecessary complexity. L2 penalty coefficients were tested on a logarithmic scale

in order to efficiently test a wide parameter space, hence in this thesis the coefficients

tested were [0, 0.0001, 0.001, 0.01, 0.1].

2. Sigma Activity Regularisation

A local optimum in the loss function may involve unreasonably high variance, which

produces unrealistic results (Hjorth and Nabney, 2000). Activity regularisation penalises

the output, σ, rather than the weights preceding the output node. Datasets with a more

complex trend will generally require higher sigma activity regularisation, to encourage the

MDN to capture the trend rather than assign a high sigma to the region. Similarly with

weight regularisation, the penalty coefficients tested were [0, 0.0001, 0.001, 0.01, 0.1, 1].

Let w be a vector of all weights in the Network, excluding bias weights. Let λw and λσ

be the L2 weight and sigma penalty coefficients, respectively. With the penalties applied

above, the Loss function during training follows Equation (3.34).

Loss(XTrain, X̂Train|w, λw, λσ) = − 1

|XTrain|
∑

i,j:Xi,j∈Train

ln(fX̂i,j(Xi,j|w)) (3.34)

+ λww ·w (3.35)

+ λσ
∑

i,j:Xi,j∈Train

K∑
k=1

σ2
i,j,k (3.36)

3. Dropout Rate

Dropout is a common regularisation technique used in Neural Network to minimise over-

fitting. In the Loss Reserving literature, dropout has frequently been successfully applied

(Gabrielli et al., 2020; Gabrielli, 2019; Kuo, 2019; Poon, 2019) for that purpose. Let

Dropout be applied to a specific hidden layer. During training, at each epoch, the MDN

will set the output of individual nodes in that layer to 0, with a rate p. This stops the

Network from over-training neurons by assigning too much weight on them relative to

the rest of the Network. When such over-trained Neurons have their output set to 0

in one epoch, the Network will be forced to place importance on other neurons. This

reduces over-fitting and increases the stability of the MDN’s output (Srivastava et al., 2014).

When the MDN has been trained and is producing projections, dropout is not applied.

However, the output of each neurons will be multiplied by 1 − p, which gives a similar

42

CHAPTER 3. MODELLING FRAMEWORKS

effect to ensembling models. This increases the accuracy and stability of output.

Despite this theoretical backing, early modelling showed that having no dropout, or

low rates of dropout, commonly outperformed. Dropout rates tested were [0, 0.1, 0.2].

Since the MDN’s modelling capacity is reduced, the number of neurons was always in-

creased by 1
1−p when a Dropout rate of p was applied to the Network.

4. Number of Components

Increasing the number of components will increase the ability of the mixture to approximate

the true distribution, at the cost of an increased risk of over-fitting and over-parametrisation.

Poisson, Gamma and Log-Normal distributions, commonly used in GLM fitting, are uni-

modal, hence less components are required to achieve a satisfactory fit. A range of 1-4

components was found to be satisfactory in approximating the distribution of Incremental

Claims.

5. Number of Hidden Layers

Between 1 − 4 Hidden layers were tested and found to be sufficient in achieving a sat-

isfactory fit. This range is concurrent with the Actuarial literature (Wüthrich, 2018b;

Gabrielli et al., 2020; Delong et al., 2020) and literature applying MDNs (Bishop, 1994; Zen

and Senior, 2014; Ormoneit and Tresp, 1996). According to the universal approximation

theory, as explained by Cybenko (1989), one hidden layer is enough to approximate any

continuous function. Despite this theory, it may take many nodes to model an accurate

function, hence using more than one layer can more effectively capture deep interactions

between variables. An excessive number of hidden layers could lead to the vanishing

gradient problem, which will slow down training (Ioffe and Szegedy, 2015).

6. Number of Neurons

Similarly, to hidden layers, a low number of neurons will reduce the flexibility of the

model, potentially causing a less accurate fit. Too many neurons can cause over-fitting.

A range of 10-30 neurons for each layer was concurrent with the Actuarial literature on

Loss Reserving. However, the literature focused on central estimate modelling, which

have simpler output. In this thesis, a range of 20-100 neurons yielded the most accurate

results. To streamline the process of hyper-parameter selection, all hidden layers were set

to contain the same number of neurons.

7. Activation Functions

Activation functions must be non-linear, as a linear activation function is equivalent to

43

CHAPTER 3. MODELLING FRAMEWORKS

the weighted summation which already occurs between each layer. Furthermore, these

functions will help capture non-linearities between variables. The tanh and sigmoid (see

Section 2.2.1) functions are simple, common and efficient in implementation. Those two

functions may suffer from gradient vanishing with deeper networks (Ioffe and Szegedy,

2015), which slows down training, hence the ReLU activation function is also common and

has been demonstrated by Kuo (2019) and Rossouw and Richman (2019).

To streamline the Model Architecture selection process, early testing found that the

Sigmoid activation function performed best, hence all further modelling used this activa-

tion.

3.2.4 Network Hyper-parameter Selection Algorithm

The MDN’s architecture was selected using a manual process, which is considered the

simplest in the Neural Network model selection algorithm literature (Abreu, 2019). In

this thesis, Grid Search and Random Search were used to select hyper-parameters.

Grid Search: Let θ be the set of values to test for a hyper-parameter. Grid Search

tests each element in θ. Grid Search is exhaustive, thus increasing the chance of finding

the best value for that hyper-parameter. However, it is time consuming (Yang and Shami,

2020).

Random Search: Let θ be the set of values to test for a hyper-parameter. Random

Search selects a random subset of θ and tests values only in this subset. Random Search is

more efficient, allowing θ to encompass a wider range of values (Bergstra and Bengio, 2012).

Before the algorithm is run, certain aspects of the MDN’s design are set constant:

• The sigmoid activation function is used for all hidden layers

• The number of neurons is equal for all hidden layers

The only hyper-parameters left to fine-tune are:

1. λw, the L2 weight penalty

2. λσ, the sigma activity penalty

3. p, the dropout rate

44

CHAPTER 3. MODELLING FRAMEWORKS

4. n, the number of neurons

5. h, the number of hidden layers

6. K, the number of components in the mixture density

Denote θ = {λw, λσ, p, n, h,K} as the set of hyper-parameters to fine-tune. The hyper-

parameter selection algorithm was conducted as such:

1. Start off with θinitial = {0, 0, 0, ninitial, hinitial, Kinitial}, a set of initial hyper-parameters

deemed suitable through judgement. Setting θinitial = {0, 0, 0, 60, 2, 2} is recom-

mended, as allowing the algorithm to explore unregularised models vastly improved

the fit in some instances.

2. Using θinitial and keeping all other hyper-parameters fixed, use Grid Search to test

all desired values of λw, the weight penalty coefficient. Select the coefficient with

the lowest test error, λ̂w, and update θ1 = {λ̂w, 0, 0, ninitial, hinitial, Kinitial}

3. Using θ1 and keeping all other hyper-parameters fixed, use Grid Search to test

all desired values of λσ, the sigma activity penalty coefficient. Select the coefficient

with the lowest test error, λ̂σ, and update θ2 = {λ̂w, λ̂σ, 0, ninitial, hinitial, Kinitial}

4. Using θ2 and keeping all other hyper-parameters fixed, use Grid Search to test all

desired values of p, the dropout rate. Select the rate with the lowest test error, p̂,

and update θ3 = {λ̂w, λ̂σ, p̂, ninitial, hinitial, Kinitial}

5. Using θ3, let N = {n1, n2, ..np1}, H = {h1, h2, ..hp2} and C = {K1, K2, ..Kp3} be the

set of neurons, hidden layers and components desired for testing. Create the set

NHK = {(ni, hj, Kk) : ni ∈ N, hj ∈ H,Kk ∈ C}. Use Random Search to select

a subset of 24 elements from NHK. Test all 24 combinations of neurons/hidden

layers/components and select the combination with the lowest test error, (n̂, ĥ, K̂).

Update θ4 = {λ̂w, λ̂σ, p̂, n̂, ĥ, K̂}

Following the algorithm, select θ4 as the final set of hyper-parameters and run the final

model.

3.2.5 Training the Network

The SynthETIC Simulator produces Individual Claims, which are aggregated into a 40x40

triangle. It is a common procedure in Neural Network modelling to standardise the input

variables, in order to stabilise the training. Through early experimentation, normalising

45

CHAPTER 3. MODELLING FRAMEWORKS

the output as well (Xi,j) was crucial in achieving convergence during training.

3.2.5.1 Training and Validation Error

For each hyparameter combination tested, θ = {λw, λσ, p, n, h,K}, an MDN with such

hyperparameters is trained on the training set of each partition, then projected on to the

testing set. For MDNs, the loss function is the Negative Log-Likelihood. During training,

at each iteration, or epoch, the MDN adjusts its weights in the aim of reducing the loss

function on the training set, as computed in Equation (3.37):

Loss(XTrain, X̂Train|w, λw, λσ) = − 1

|XTrain|
∑

i,j:Xi,j∈XTrain

ln(fX̂i,j(Xi,j|w)) (3.37)

+ λww ·w + λσ
∑

i,j:Xi,j∈XTrain

K∑
k=1

σ2
i,j,k (3.38)

Through early experimentation, the Adam (ADAptive Momentum) optimiser with a

learning rate of 0.001 provided the most stable training and accurate results. The MDN

calculates the validation loss at each epoch, as shown in Equation (3.39).

Loss(XV alidation, X̂V alidation|w, λw, λσ) = − 1

|X|V alidation

∑
i,j:Xi,j∈XV alidation

ln(fX̂i,j(Xi,j|w))

(3.39)

+ λww ·w + λσ
∑

i,j:Xi,j∈XV alidation

K∑
k=1

σ2
i,j,k (3.40)

The validation error will tend to decrease in early iterations as the model is better fit,

however, will increase later due to overfitting. The MDN cannot adjust its weights to

directly minimise the validation loss, however, overfitting can be minimise by Early Stop-

ping (Gabrielli et al., 2020), which involves stopping the model’s training as soon as the

validation error is minimised. It was common during training to see the validation error

rise up for hundreds of epochs before going down again. Therefore, a patience of 1000

epochs was set when using Early Stopping, that is, training only stops if the Validation

error hasn’t reached its lowest level in the last 1000 epochs. This gives the Network room

to rebound when it hits a high loss area in the parameter space during training.

46

CHAPTER 3. MODELLING FRAMEWORKS

3.2.5.2 Test Error

Denote θ as the hyper-parameter values of the MDN being run. Let w1 and w2 be the final

weights of the MDN when trained on the training data of the first and second partitions,

respectively. In addition, let fX̂i,j(x|w, θ) be the density of X̂i,j projected by an MDN

with hyper-parameters θ and weights w.

Let T1 and T2 be the set of cells (i, j) in the testing set of the first and second parti-

tions, respectively. A separate MDN is trained T times in each partition, let wi,t be the

weights of the tth model trained on the ith partition. The test error of the MDN with

hyper-parameters θ is calculated from Equations (3.41 - 3.43).

TestError(θ,Partition 1) = − 1

T

T∑
t=1

∑
i,j:(i,j)∈T1

ln(fX̂i,j(Xi,j|w1,t,θ)) (3.41)

TestError(θ,Partition 2) = − 1

T

T∑
t=1

∑
i,j:(i,j)∈T1

ln(fX̂i,j(Xi,j|w2,t,θ)) (3.42)

TestError(θ) =
|T1| ∗ TestError(θ,Partition 1) + |T2| ∗ TestError(θ,Partition 2)

|T1|+ |T2|
(3.43)

Hence, the MDN is trained 2T times for each set of hyper-parameters θ, as each run

will have a different weight initialisation and hence a different fit. Averaging the error of

these runs reduces the impact of random weight initialisation on the performance of the

hyper-parameter set θ.

3.2.6 Fitting the Final Model

Once all desired hyper-parameter combinations are tested, the combination with the lowest

test error, θmin (see Section 3.2.3 for details), is set as the model architecture of choice.

To produce distributional forecasts of claims in the Lower Triangle, the chosen MDN is

run on the entire Upper Triangle. Only a training/validation split is needed, since the

testing set was only used to compare different hyper-parameters. The training/validation

partition of the Upper Triangle was done sequentially, with similar considerations for DQ2

and 3. The third partition is visualised in Figure 3.4.

An MDN with hyper-parameters θmin is fit 5 times on the training data of Partition 3,

under different weight initialisations. Let wz be the set of the MDN’s final weights in the

47

CHAPTER 3. MODELLING FRAMEWORKS

Figure 3.4: The training/validation partition of the Upper Triangle. The chosen MDN
design is fit on the training data and used to project claims in the Lower Triangle

zth run. Once trained, the Upper and Lower triangles are fed an input into the MDN,

which produces the (α, µ, σ) output needed to form a distributional estimate, as shown in

Equation (3.44).

MDNθ(wz) : (i, j)
wz7−→ (αi,j, µi,j, σi,j), (3.44)

which forms the distribution for X̂i,j, as shown in Equation (3.45):

fX̂i,j(x|wz) =
K∑
k=1

αwzi,j,kφ(x|µwzi,j,k, σ
wz
i,j,k) (3.45)

Running the MDN 5 times with different weight initialisations yields an ensemble of

models, which are then averaged to produce the distribution of incremental claims shown

in Equation (3.46).

fX̂i,j(x) =
1

5

5∑
z=1

K∑
k=1

αwzi,j,kφ(x|µwzi,j,k, σ
wz
i,j,k) (3.46)

Mean and variance estimates follow from the equations in Section 3.1.4, except with 5

times the number of distributions.

48

CHAPTER 3. MODELLING FRAMEWORKS

3.3 Model Evaluation

The final MDN model is fit on the Lower Triangle and compared to the ccODP model.

The results of two main variables were analysed:

1. Individual cells, Xi,j

2. Total reserves, R =
∑

i,j:i+j>41Xi,j

The measure of total reserves, R, is used directly in reserving. Capital standards set by

APRA and Solvency II require reserve allocations to meet total reserves in the Lower

Triangle with a 75% and 99.5% probability of sufficiency, respectively. However, it is

important for a model to achieve accurate total reserves by correctly modelling the indi-

vidual cells, Xi,j. A model can over-estimate claims for part of the Lower Triangle, but

under-estimate for others, yielding accurate total reserves and misleading the user as to the

model’s predictive accuracy. Such a model may not be so fortunate in other environments,

hence it is important for a model to excel primarily in accurate forecasting of individual cells.

Results were analysed qualitatively and quantitatively. Sections 3.3.2 and 3.3.3

provide further detail. The use of qualitative analysis, primarily graphical plotting, provide

a detailed picture of the model’s ability to capture the main trends of the data and produce

reasonable forecasts, serving as a sanity test of the model. Quantitative tests, such as the

Root Mean Squared Error (RMSE) and Log Score, allow for more objective evaluation of

different models.

3.3.1 Benchmark - Cross-Classified Over-Dispersed Poisson Model

The benchmark model was the Cross-Classified Over-Dispersed Poisson model, or the

ccODP, as it’s a popular model in Loss Reserving. The ccODP is simplistic, providing

the same central estimates as the Chain Ladder. Furthermore, a vast amount of

the Neural Network Loss Reserving literature uses the Chain Ladder or ccODP as its

benchmark (Kuo, 2019; Gabrielli et al., 2020; Gabrielli, 2019; Delong et al., 2020; Kuo,

2020; Wüthrich, 2018b).

The ccODP model assumes that Incremental Claims, Xi,j, follow a Cross-Classified

49

CHAPTER 3. MODELLING FRAMEWORKS

Over-Dispersed Poisson distribution, as Equation (3.47) shows.

X̂i,j

φ
∼ Poi

(
AiBj

φ

)
(3.47)

The ccODP model produces the following mean and volatility estimates:

• E[X̂i,j] = AiBj

• V ar(X̂i,j) = φAiBj

The Cross-Classified structure of the model, as well as the assumption of a constant φ, leads

it to produce mean estimates that are identical to the Chain Ladder. Hence, the ccODP’s

shortcomings in central estimate accuracy follow from the Chain Ladder’s shortcomings:

• The ccODP assumes that claim development is homogeneous across Accident periods.

Hence, it will not be able to capture Calendar period based changes, such as an

inflation shock or a change in legislation with affects claim processing speed.

• The ccODP assumes the Over-Dispersed Poisson distribution for claims, which is a

popular assumption. However, the volatility estimates are a function of the central

estimates, meaning that where central estimates are inaccurate, it is likely that

volatility estimates will be as well.

See the Appendix A.2 for details on how the ccODP model is fit.

3.3.2 Qualitative Analysis

Central Estimates: Plots of the MDN and ccODP’s central estimates µ̂i,j will be com-

pared to actual losses of the dataset Xi,j, as well the empirical mean calculated from

hundreds of simulations of the same dataset. To be successful, the MDN’s central estimates

should be closer than the ccODP’s estimates to actual losses and the empirical mean of

Incremental Claims.

Risk Margins: Plots of the MDN and ccODP’s mean-centred risk margins (at the

25%, 75% and 95% level) will be compared to empirical risk margins. The model with

closer margins to the empirical results will have captured the distribution shape of Incre-

mental Claims more accurately.

Quantile Estimates: Plots of the MDN and ccODP’s quantile estimates (at the 25%,

50

CHAPTER 3. MODELLING FRAMEWORKS

75% and 99.5% level) will be compared to empirical quantiles. The model with closer

quantile estimates, X̂i,j,q for q = 0.25, 0.75, 0.995, to the empirical results will have captured

them more accurately.

Total Reserves: The distributions of total reserves estimated by the MDN and ccODP, R̂,

will be plotted alongside the empirical distribution of total reserves. The bias, dispersion

and quantile estimates will be analysed visually. The MDN, to be successful, should have

a lower bias than the ccODP, as well as dispersion estimates that is closer to the empirical

distribution.

3.3.3 Quantitative Analysis

When analysing individual cells, Xi,j , several statistics will be calculated to each Loss Trian-

gle involved in the modelling. For total reserves, R, the MDN and ccODP will be fit on 10

triangles for each of the four data environments, to generate reserve estimates for

each triangle, R̂i for i = 1, 2, 3..10. Let X = {Xi,j : i+ j > 41}, R = {Ri, i = 1, 2, 3, ..10}
and fX̂ = {fX̂i,j : Xi,j ∈ X} . The quantitative metrics used are calculated as follows:

1. Distributional forecast accuracy, using the Log score metric (Equation

3.48):

LogScore(X, fX̂) =

∑
(i,j):Xi,j∈X ln(fX̂i,j(Xi,j))

|X|
(3.48)

This formula is equivalent to the Likelihood function; a higher Log Score is desirable as it

indicates a more accurate distributional fit for the Lower Triangle. The Log Score wasn’t

calculated when analysing total reserves, as the fitted distributions usually fell completely

outside the simulated empirical distribution, setting the Likelihood to 0.

2. Central estimate forecast accuracy, using the MSE metric (Equation 3.49,

3.50):

RMSE(X, X̂) =

√∑
(i,j):Xi,j∈X(Xi,j − X̂i,j)2

|X|
(3.49)

RMSE(R, R̂) =

√∑10
i=1(Ri − R̂i)2

10
(3.50)

A lower RMSE indicates more accurate central estimates for the Lower Triangle and total

reserves.

51

CHAPTER 3. MODELLING FRAMEWORKS

3. Quantile forecast accuracy, using Quantile Scores (Equation 3.51, 3.52):

The 75% and 99.5% quantiles are analysed quantitatively, using the quantile scoring

function. Let ˆXi,j,q be the qth quantile estimate of Xi,j and R̂i,q be the qth quantile

estimate for total reserves Ri. The Quantile Score is calculated as follows:

QS(X̂q,X) =

∑
(i,j):Xi,j∈X(1(Xi,j < X̂i,j,q)− q)(Xi,j − X̂i,j,q)

|X|
(3.51)

QS(R̂q,R) =

∑10
i=1(1(Xi,j < X̂i,j,q)− q)(Xi,j − X̂i,j,q)

10
(3.52)

A lower Quantile Score indicates more accurate quantile estimates, for individual cells

and total reserves. The score is a weighted sum of residuals. The weights are 1− q or q,

depending on whether the actual loss is higher or lower than the quantile estimate.

3.3.4 Objectives

This thesis proposes the MDN as a Neural Network that specialises in distributional

forecasting and achieves accurate results when applied to Loss Triangle reserving. The

MDN’s success depends on its performance relative to the ccODP, in terms of central

estimates, distributional and quantile estimate accuracy.

Following the research aims for this thesis, if the MDN model achieves the following

objectives in the Lower Triangle, when compared to the ccODP fit, it will be considered a

success:

• Produce a higher log score, lower RMSE and lower quantile scores for the 75%

and 99.5% levels, demonstrating more accurate distributional and central estimate

forecasting, in most triangles for each of Datasets 1,2,3 and 4 (see Section 4.2).

• Produce stable claims forecasts, especially for the volatile Dataset 4 (see Section

4.2.4).

• For Datasets 2,3 and 4, the MDN produces total reserve estimates which have a lower

RMSE and lower Quantile Scores. Furthermore, the bias and dispersion estimates

of total reserves must be closer to the empirical distribution of R in the majority

of triangles run for each claim environment. The ccODP is naturally suited to

performing well on the simplistic Dataset 1, hence no requirements are set for the

52

CHAPTER 3. MODELLING FRAMEWORKS

MDN to outperform it in that setting.

These goals, which the MDN achieved, will increase the reliability and applicability of

Neural Networks in reserving. The literature is at an early stage of applying Neural Net-

works in this field, however, with benchmarks only being set against relatively simplistic

traditional models such as the Chain Ladder.

53

CHAPTER 4

DATA ANALYSIS

This chapter analyses the data being used for this thesis. Section 4.1 analyses the benefits

and drawbacks of using real and simulated data. Section 4.2 goes through the data

simulation methodology, with an explanation of the features of each dataset simulated

and used in this thesis.

4.1 Simulated vs Real Data

Two main sources of data exist: real and simulated data. Individual Claim simulators

have arisen out of the accommodation of large datasets by modern computers and the

lack of publicly available Individual Claims data, which has hampered the development

and testing of Individual Claims models (Gabrielli and Wüthrich, 2018). While this thesis

will focus on Loss Triangle reserving, the existence of a granular simulator will allow more

flexibility in generating ample data for better estimating the empirical mean and volatility

of claims, as well as testing consistency and robustness through generating multiple triangle

under different claim process environments.

A pitfall of simulating claims, as noted by Murray et al. (2011) is that complex interactions

in real data may not be captured by the simulator, ’hindering model development’. Fitting

a model on unrealistic data will reduce its validity.

54

CHAPTER 4. DATA ANALYSIS

4.1.1 Simulator: SynthETIC (2020)

This thesis uses simulated data for modelling, using the SynthETIC claims simulator

developed by Avanzi et al. (2020). This simulator generates Individual Claims following a

model which isn’t calibrated to data but is determined explicitly by the user. The following

variables are determined as such:

• Maximum development period, I, is of arbitrary scale and determined by the user.

Given user-defined business exposure and claim frequency, E and λ, the number

of claims for the Accident period is Poisson distributed with mean E ∗ λ and are

assorted in the specified period according to a Uniform distribution.

• The total claim size of each Individual Claim, along with reporting and settlement

lags, are sampled through a user-defined distribution. Reporting and settlement lag

distribution inputs are dependent on claim occurrence and size.

• The number, size and distribution of partial payments are simulated from a user-

specified distribution which is dependent on claim size.

• Claims are adjusted based on a superimposed inflation index.

Advantages

• Allows high aggregation, as claim intervals can be defined freely by the user.

• Highly flexible claim simulation conditions, as distributions are user-specified, which

allows many different business scenarios to be simulated.

• Allows for dependencies between reporting lag, settlement lag, partial payments and

claim size.

Disadvantages

• Simulator does not calibrate to a given dataset, thus requiring a strong understanding

of claim dynamics to specify realistic distributions, or a separate modelling process

which calibrates to an external claims dataset.

4.2 Simulated Datasets

The size of each triangle simulated in this thesis is 40x40. Four different claim

environments were simulated, of various features and complexities. The environments, or

55

CHAPTER 4. DATA ANALYSIS

Datasets, were:

1. Dataset 1: Simple, short tail claims

2. Dataset 2: Gradual shift from long tail to short tail claims, that is, an increase in

claims processing speed

3. Dataset 3: Inflation shock

4. Dataset 4: Highly volatile claims

Simulating different environments was done to test the MDN’s versatility and ability to

capture complex trends and produce accurate forecasts in a variety of challenging envi-

ronments. For each Dataset, 10 independent triangles were simulated, meaning

that the MDN is fit on 40 triangles in total. As a Loss Triangle is a random variable, it is

important to run the MDN on a large sample of triangles to gain a better understanding

of its accuracy and also test its ability to provide consistent results.

For each Dataset, the dynamics that were kept constant were the number, amount

and time distribution of the partial payments of each individual claim. The variables

altered were the claim size distribution, reporting delay mean and coefficient of variation,

the settlement delay mean and coefficient of variation and the Superimposed inflation

occurrence and payment factors. The reporting and settlement delays followed a Weibull

distribution. See Appendix A.3 for a technical methodology of the simulation of each

Dataset.

4.2.1 Dataset 1: Simple, Short Tail Claims

This dataset includes simple, short tail claims, homogeneous in composition for all Accident

Quarters. The reporting and settlement delays have been approximately calibrated to

show similar characteristics to the simulator developed by Gabrielli and Wüthrich (2018).

Figures 4.1 and 4.2 plot the Incremental Claims for Dataset 1:

What complicated this dataset is the peak in claims observed in Development Quarter 2

(DQ2). The assumption of reporting and settlement delays following a Weibull distribution

plays a part in this peak. Despite this complexity, datasets of this nature are common.

Another feature in this Dataset is a constant inflation of 2% per annum. With Incremental

claims having low noise and almost perfect homogeneity, the ccODP forecasted OSC

almost perfectly in this Dataset. Hence, this Dataset is a preliminary test to the feasibility

56

CHAPTER 4. DATA ANALYSIS

Figure 4.1: A colour-coded 3D plot of Incremental claims for Dataset 1

Figure 4.2: A plot of the Incremental Claims of Dataset 1, for selected Accident Quarters.
Solid lines represents data in the Upper Triangle, while dashed lines represent data in the
Lower Triangle

of MDNs in modelling 40x40 triangles and producing reasonable results.

4.2.2 Dataset 2: Shift from Long Tail to Short Tail Claims

This Dataset introduces complexities which the Chain Ladder should fail to capture.

Initially, there are more long tail claims, however, the proportion of these claims decreases,

while the proportion of short claims increases. From the Incremental Claim plot shown

below, later AQs see higher losses early and less losses later on, due to the increasing

proportion of short tail claims. Inflation is at a constant 2% per annum, while a 3%

constant SI is compounded. Figures 4.3 and 4.4 plot the Incremental Claims:

In this Dataset, the claim characteristics gradually shift in nature. This systematic

volatility is seen is two constrasting ways. Firstly, for DQ10 and less, claims increase

57

CHAPTER 4. DATA ANALYSIS

Figure 4.3: A colour-coded 3D plot of Incremental claims for Dataset 2

Figure 4.4: A plot of the Incremental Claims of Dataset 2, for selected Accident Quarters.
Solid lines represents data in the Upper Triangle, while dashed lines represent data in the
Lower Triangle

as the AQ increases. After DQ10, claims decrease as the AQ increases. The shortening

of claims explains both these trends.The main question to be answered in testing this

dataset is, given the systematic volatility in the claims data, can the MDN accurately

distinguish between systematic and unsystematic volatility and capture the distribution of

data points accurately? That is, will the MDN learn that claims are getting shorter, or

will it attribute the trend to noise?

4.2.3 Dataset 3: Inflation Shock at Calendar Quarter 30

In this Dataset, Superimposed inflation is changed instantly from 0% to 8& per annum,

starting at AQ30. The 8% inflation remains constant in the Lower Triangle. This Dataset

tests the ability of the MDN to recognise changes in Calendar effects and adapt projections

accordingly. Only the last 10 calendar quarters in the Upper Triangle contain information

58

CHAPTER 4. DATA ANALYSIS

regarding the inflation shock, which increases the difficulty for the MDN. Furthermore,

the Rolling Origin validation method has lower training exposure to data in the latest

Calendar Quarters, especially in the first partition. Hence, this Dataset tests whether the

Rolling Origin method can still make use of the latest Quarters and capture the inflation

shock effectively. Figures 4.5 and 4.6 plot the Incremental Claims:

Figure 4.5: A colour-coded 3D plot of Incremental claims for Dataset 3

Figure 4.6: A plot of the Incremental Claims of Dataset 3, for selected Accident Quarters.
Solid lines represents data in the Upper Triangle, while dashed lines represent data in the
Lower Triangle

4.2.4 Dataset 4: High Volatility

This dataset is the default triangle generated by the SynthETIC simulator. The volatility

of losses are incredibly high. Claims are very low in frequency, but follow a power-Normal

distribution with power 0.2, which results in a very volatile severity. As claim size in-

creases, reporting delay decreases, while settlement delay increases on average. Small

claims settle slightly faster as they occur later, although that effect stops at AQ21. After

59

CHAPTER 4. DATA ANALYSIS

AQ20, claims are multiplied by a factor which is 0.6 for zero claims and rises to 1 as claim

size increases. Superimposed inflation is at 30% per annum, however that rate is multipled

by a factor which decreases as claim size increases. These additional trends exacerbate

the volatility which was already present. It is normal for claims in one AQ to follow a

completely different pattern (reporting, settlement, volume, development pattern) than

claims in the adjacent AQ. One trend is prevalent in thi dataset; the slow development

of claims and high superimposed inflation. Figures 4.7 and 4.8 plot the Incremental Claims:

Figure 4.7: A colour-coded 3D plot of Incremental claims for Dataset 4

Figure 4.8: A plot of the Incremental Claims of Dataset 4, for selected Accident Quarters.
Solid lines represents data in the Upper Triangle, while dashed lines represent data in the
Lower Triangle

60

CHAPTER 5

RESULTS

This chapter outlines the results obtained from modelling with the MDN and ResMDN in

this thesis, comparing results to the ccODP model. Section 5.2 analyses the impact that the

Rolling Origin method had on delivering smooth, robust and stable forecasts with the MDN.

Section 5.3 analyses the MDN’s performance when it came to probabilistic forecasting, with

a constant benchmarking to the ccODP. Section 5.4 analyses the ResMDN’s performance,

compared to the ccODP and MDN. The costs of interpretability are analysed based on

the results obtained from modelling.

5.1 Stable Forecasts - Rolling Origin Model Valida-

tion

The Rolling Origin Model Validation method served two purposes in this thesis:

1. To partition the Upper Triangle into training, validation and testing sets. This

allowed different models and hyper-parameter combination to be tested and selected

based on their accuracy in the test set.

2. To specifically assess different models based on their projection accuracy, which

increases the chance of selecting a model which projects accurately into the Lower

Triangle. This is done through the sequential partitioning of data, such that the

61

CHAPTER 5. RESULTS

testing data is comprised of the latest calendar quarters.

Generally, the set of hyper-parameters selected by the Rolling Origin method produced very

reasonable and accurate central and distributional forecasts. All models were successful

in predicting a decrease in the mean and volatility of claims in the later Development

Quarters (DQs), which is a significant achievement given the low number of data available

to the MDN in those periods. Figure 5.1 plots the MDN’s mean and volatility estimates

on Dataset 2, showing the accuracy of projections given its systematic complexity.

Figure 5.1: Dataset 2: Plots of the overall fit of the MDN. Blue represents actual losses,
red is the MDN’s central estimate, with the black dashes representing the MDN’s one
standard deviation margin. The grey area represents the Lower Triangle, the forecasting
region.

The MDN also produced robust predictions. This can especially be seen in Figure 5.2,

which plots the MDN’s and ccODP’s fit to the highly volatile Dataset 4. As the cell at

(40, 1) is equal to 0, the ccODP predicted 0 claims for the rest of AQ40, while the MDN

maintained mean and volatility estimates consistent with other AQs. This shows that

where the ccODP’s fit can be overly dependent on select data points, the MDN produces

a more holistic fit, as the data is input numerically, not categorically, into the model.

The MDN’s robustness can be partially attributed to its smooth mean and volatility

fit in both the Upper and Lower Triangles. The Rolling Origin method, in the third

partition, uses the latest Calendar Quarters for validation. A model that overfits the

62

CHAPTER 5. RESULTS

data won’t project accurately, hence the MDN is encouraged to produce smoother and

more robust fits. The smoothness can be visualised in Figure 5.2 as well, where the MDN

produces a significantly smooth fit despite the huge volatility present in the dataset.

The Rolling Origin Model Validation method proved successful at partitioning a 40x40

Figure 5.2: Dataset 4: Plots of the overall fits of the MDN and ccODP models. Blue
represents actual losses, red is the MDN’s central estimate, with the black dashes repre-
senting the MDN’s one standard deviation margin. The green line is the ccODP’s central
estimate. The grey area represents the Lower Triangle, the forecasting region.

triangle. The scarcity of data relative to the large datasets Neural Networks are used to

would discourage the use of the Rolling Origin method. However, both the MDN and

Rolling Origin partition performed excellently on 820 points, making the MDN more

appropriate in a practical setting.

5.2 Probabilistic Forecasting with the Mixture Den-

sity Network

The Mixture Density Network (MDN), overall, outperformed the ccODP for all Datasets

in all qualitative and quantitative metrics. When analysing both Individual Cells and

total reserves, the MDN outperformed the ccODP, often in a decisive manner.

63

CHAPTER 5. RESULTS

5.2.1 Central Estimate Analysis

The MDN produced more accurate central estimate projections than the ccODP in all

Datasets. Where the Dataset had more structural heterogeneity, the MDN decisively

outperformed in all metrics. The MDN’s central estimates were smooth and always positive,

which is a significant achievement given that the input and output data was normalised.

This is further evidence towards the accuracy of its projections.

In addition to its smooth fit, the MDN showed great modelling power and flexibility,

capturing all trends simulated in the four different claim environments. In Dataset 2,

the MDN successfully learned that claims processing speed is increasing, predicting a

sharper spike in claim payments in the later AQs. Figure 5.3 plots the results for this

dataset. The ccODP, assuming homogeneity in claim development, ended up approx-

imating claims to be middle-tailed, leading to a clear over-estimation of claims in later AQs.

For Dataset 3, the MDN accurately captured the inflation shock at Calendar Quarter 30

Figure 5.3: Dataset 2: Plots comparing the mean estimates of the MDN and ccODP
models to the empirical mean claims based on 250 simulations. The red line represents
the MDN’s central estimate, the green line represents the ccODP’s central estimate, while
the black line represents the empirical mean of claims. The grey area represent the Lower
Triangle.

(CQ30) onwards. Figure 5.4 plots the results. The ccODP did not keep up with the in-

creased inflation due to its inability to handle heterogeneity, leading to it under-estimating

64

CHAPTER 5. RESULTS

claims from CQ30 onwards.

Generally, the MDN’s out-performance relative to the ccODP is due to its high flexibility,

Figure 5.4: Dataset 3: Plots comparing the mean estimates of the MDN and ccODP
models to the empirical mean claims based on 500 simulations. The red line represents
the MDN’s central estimate, the green line represents the ccODP’s central estimate, while
the black line represents the empirical mean of claims. The grey area represent the Lower
Triangle.

being able to fit a highly flexible function to the data and capture non-linearities. This

flexibility can easily lead to over-fitting, but the Rolling Origin Model Validation method

ensured that the MDN’s flexibility was enough to capture the relevant trends in the data

while minimising over-fitting. Figure 5.5 provides boxplots of the MDN’s % reduction of

the RMSE relative to the ccODP for 10 triangles in each of Datasets 1,2,3 and 4. The

boxplots show that the MDN achieved a positive reduction in the RMSE (lower RMSE)

relative to the ccODP for the majority of triangles in each Dataset.

Despite the MDN’s success, it showed weaknesses in several areas, which were fixed:

• The MDN can struggle to capture systematic spikes in claims. Such a spike was seen

in AQ40, DQ2 for Dataset 2, in which the increased speed in claims processing led

to an unprecedented spike in claims early on in later AQs. The MDN, not being

given enough data to decipher that specific trend, failed to accurately capture the

peak, instead under-estimating claims and over-estimating volatility. This reveals

65

CHAPTER 5. RESULTS

Figure 5.5: Boxplots displaying the MDN’s % reduction in the RMSE relative to the
ccODP for each of the 10 triangles run for Dataset 1,2,3 and 4. A positive Reduction
indicates the MDN had a lower RMSE than the ccODP for a specific triangle.

a dynamic between central and volatility estimates. Where the central estimate is

off, the MDN will raise volatility estimates to increase the likelihood. This dynamic

exists when using the NLLLoss. This issue was solved by adding an MSE term to

the Loss to encourage more accurate central estimates. It was successful in helping

the MDN capture sharper spikes in claims. This shows that, using just the NLLLoss,

the MDN can struggle to capture accurate central estimate for sharp systematic

fluctuations in Incremental Claims.

• The Rolling Origin Model Validation method did not accurately capture trends

embedded in the later Calendar Quarters. In Dataset 3, the MDN failed to accurately

capture the inflation shock, as it wasn’t trained on much data where the shock took

effect. The first partition, especially, is barely trained or validated on the later

Calendar Quarters, which contain crucial information for projection. To mitigate

this issue, the data partitioning was performed differently. While the validation

and testing data were given later quarters as a priority, training points were also

taken in that period in a random sample to ensure the MDN was made aware of the

inflation trend. See the Appendix B.3 for details on the data partition. This new

partition achieved more accurate projections, capturing the inflation shock much

more accurately.

• Fitting a Mixed Log-Normal on volatile data with many 0 cells will lead to unrea-

sonably high mean and volatility estimates. This phenomenon was observed with

Dataset 4, which features high volatility and many 0 cells in the later DQs. As a

result, the MDN estimated a very high volatility rate for the later DQs, leading to

high mean and volatility estimates when the data was converted to its raw form.

66

CHAPTER 5. RESULTS

This issue was solved by smoothing the log claims from DQ30 onwards, reducing

its volatility and stabilising projections. This shows that when dealing with highly

volatile log data, smoothing results is necessary to achieve reasonable results.

The MDN also showed small weaknesses which are worth addressing for completeness of

their analysis:

• The MDN didn’t attempt to capture the spike in claims at DQ40. Removing the

(1,40) cell didn’t visibly impact results.

• Generally, the MDN slightly over-estimated claims in the later DQs, due to low

amounts of data in that region. Where there is low data, the MDN is less swayed

by it, hence the central estimates in the later DQs is still influenced by the higher

central estimates from earlier DQs.

• The MDN struggled to capture high superimposed inflation. This is seen in dataset

4, which has approximately 30% SI, where the MDN continually underestimated

claims in later AQs and earlier DQs. Inflation effects really show in the later AQs,

but the MDN doesn’t capture them as the data in that region is in small numbers.

5.2.2 Volatility Estimate Analysis

The Mixture Density Network produced very smooth and accurate volatility estimates.

Where noise in the data was low, the MDN projected low volatility, and vice versa. Overall,

it outperformed the ccODP qualitatively and quantitatively when it came to estimating

the volatility of Individual Cells.

The MDN’s risk margin estimates at the 25th and 75th percentile were more accurate

overall than the ccODP’s margins in almost all environments tested, an indicator that it

captured volatility more accurately. The only exception was Dataset 1, which due to its

simplicity, the ccODP performed almost perfectly in all regards. The ccODP’s variance is

a function of its mean, hence it failed where the central estimates failed. For example, in

Dataset 2, the ccODP over-estimates claims in later AQs, which led to it over-estimating

margins in that same period. In Dataset 3, the ccODP under-estimated claims in later

Calendar Quarters (CQs), as it didn’t effectively capture the inflation shock. This led to

volatility estimates also being too low in those periods, as Figure 5.6 illustrates.

While the Neural Network Loss Reserving literature does fit stochastic models, the

MDN’s accuracy in estimating volatility justified the usage of a Neural Network that specif-

67

CHAPTER 5. RESULTS

Figure 5.6: Dataset 3 (Inflation Shock): Plots comparing the 25%, 75% and 95% risk
margin estimates of the MDN and ccODP models to the empirical margins based on 500
simulations. The red line represents the MDN’s margin estimates, the green line represents
the ccODP’s margin estimate, while the black line represents the empirical margins. The
solid lines, dashed and dotted lines represent the 25%, 75% and 95% margins, respectively.
The grey area represent the Lower Triangle.

ically focuses on distributional forecasting. The MDN’s out-performance in estimating

volatility compared to the ccODP was due to its higher flexibility in modelling trends in

the data, as well as more flexibility in the parametrisation of the Mixed Gaussian. While

some correlation was found in the results between central and volatility estimates, the

Mixed Gaussian places no dependence on these values, allowing the MDN to fit a wider

range of distributions than the ccODP. Figure 5.7 provides boxplots of the MDN’s increase

in the Log Score relative to the ccODP for 10 triangles in each of Datasets 1,2,3 and 4.

The boxplots show that the MDN achieved a higher Log Score relative to the ccODP for

the majority of triangles in each Dataset, indicating a more accurate probabilistic forecast.

With the MDN’s success, there are some weaknesses which must be addressed:

• The MDN still showed signs of attributing noise to systematic trends. In Dataset

2, even though the DQ2 spike was fixed, the volatility was still too high for AQ30

and AQ40. This is also because of the DQ1 ’trough’ not being captured accurately,

leading to high volatility estimates which have influenced estimates in DQ2. Figure

5.8 plots the risk margin estimates for Dataset 2, where the claim processing speed

68

CHAPTER 5. RESULTS

Figure 5.7: Boxplots displaying the MDN’s increase in the Log Score relative to the ccODP
for each of the 10 triangles run for Dataset 1,2,3 and 4.

gradually increases.

• Similar to central estimates, the MDN often over-estimates volatility in later DQs.

Due to a lack of data in that region, the volatility estimates are influenced by

estimated of earlier DQs, which are higher. This wasn’t fixed by constraining mean

projections for Dataset 2.

5.2.3 Quantile Estimate Analysis

The MDN provided more accurate 75% and 99.5% quantiles for all Datasets in the majority

of triangles run for each Dataset. These results follow from the MDN’s ability to provide

more accurate central estimates and volatility estimates. The quantile analysis was mainly

quantitative, using the Quantile Scores. Figure 5.9 plots the 99.5th quantile estimates for

the MDN and ccODP models for individual cells, using the empirical 99.5th quantiles as a

measure of the real value. The figure shows that the MDN yields 99.5% quantile estimates

that are much closer to the empirical quantiles than the ccODP, confirming that the MDN

has modelled the mean and distribution of Incremental Claims more accurately.

The ccODP often gave low mean and volatility results in later DQs, leading to quantile

estimates that were lower than actual losses for that cell. This penalised the quantile

loss heavily. The MDN’s robustness and smoothness helped it avoid forecasting such

under-dispersed distributions. Figure 5.10 provides a boxplot of the MDN’s percentage

reduction in the 75% and 99.5% quantile scores relative to the ccODP for each triangle

in each Dataset. The plot confirms that in all Datasets, the MDN reduces the 75% and

99.5% Quantile scores for the majority of triangles, indicating more accurate quantile

estimates at the 75% and 99.5% levels.

69

CHAPTER 5. RESULTS

Figure 5.8: Dataset 2: Plots comparing the 25% and 75% risk margin estimates of the
MDN and ccODP models to the empirical margins based on 250 simulations. The red line
represents the MDN’s margin estimates, the green line represents the ccODP’s margin
estimate, while the black line represents the empirical margins. The solid lines represent
the 25% margins, while the dashed lines represent the 75% margin. The grey area represent
the Lower Triangle.

The MDN and ccODP models were run on ten triangles of each of Datasets 1,2,3

and 4. The quantitative metrics are calculated for the 10 triangles and averaged, with

results between the MDN and ccODP models compared in Table 5.1 As the table shows,

the MDN, on average, had a lower RMSE and Quantiles Scores and had a higher Log

Score for each Dataset, which is a significant out-performance by the MDN. Table 5.2

further reinforces these results by showing the percentage of triangles in which the MDN

outperformed the ccODP for each quantitative metric. In each Dataset, the MDN outper-

forms the ccODP in each metric in the majority of triangles, except Dataset 1.

These quantitative results confirm the MDN’s out-performance of the ccODP, in terms

of central, volatility and quantile estimate, in all Datasets. This is due to the MDN’s

flexibility, which allows it to capture complex heterogeneous trends in the data, producing

more accurate forecasts as a result.

70

CHAPTER 5. RESULTS

Figure 5.9: Dataset 2: Plots comparing the 99.5th quantile estimates of the MDN and
ccODP models to the empirical 99.5th quantile claims based on 250 simulations. The
red, green and black lines represents the MDN’s estimate, the ccODP’s estimate and the
empirical quantile respectively. The blue line represents actual losses, while the grey area
represent the Lower Triangle.

Dataset Model Mean RMSE Mean LS Mean QS (75%) Mean QS (99.5%)

1 MDN 1499.0 -8.05 374.1 25.3
1 ccODP 1621.9 -8.09 380.8 34.0
2 MDN 11,031.1 -10.4 3,033.6 201.9
2 ccODP 52,423.9 -12.9 10,181.3 365.0
3 MDN 12,887.2 -10.7 4,087.3 341.7
3 ccODP 16,985.2 -11.4 5,441.9 1,473.9
4 MDN 623,301.0 -14.5 193,688.8 31,408.5
4 ccODP 928,707.7 -15.2 252,213.2 40,589.7

Table 5.1: The average score, over 10 triangles, of each quantitative metric; the RMSE,
Log Score (LS) and Quantile Scores (QS) for the 75% and 99.5% levels. The MDN
outperformed the ccODP in all Datasets and metrics when the average is taken.

5.2.4 Total Reserves

The MDN, in all Datasets except Dataset 1, showed a lower bias and more accurate

dispersion of total reserves compared to the ccODP estimate. Figure 5.11 plots these

results. This confirms the results observed when analysing the models’ fits on Individual

Cells. The MDN, having more accurate central estimates, had a lower bias to the empirical

distribution of total reserves. Having estimated volatility and quantiles more accurately,

71

CHAPTER 5. RESULTS

Figure 5.10: Boxplots displaying the MDN’s (%) reduction in the 75% and 99.5% Quantile
Scores relative to the ccODP for each of the 10 triangles run for Dataset 1,2,3 and 4.

Triangles Outperformed by MDN (%)
Dataset RMSE Log Score Quantile Score (75%) Quantile Score (99.5%)

1 70 60 50 80
2 100 100 100 100
3 100 100 100 100
4 100 80 100 70

Table 5.2: The percentage of triangles in which the MDN outperformed the ccODP in
that specific metric.

the MDN estimated a more accurate dispersion of total reserves than the ccODP. Similarly,

given more accurate central and volatility estimates achieved by the MDN, it had more

accurate 75% and 99.5% quantiles of total reserves compared to the ccODP. Table 5.3

calculated the quantitative metrics for both models for total reserve estimates, R̂. The

table confirms Figure 5.11, with Dataset 1 scoring a lower RMSE and Quantile Scores.

The MDN outperforms for other Datasets, except it scores a high 99.5th Quantile Score

for Dataset 4. This is due to the MDN occasionally under-estimating claims, which

penalised the Quantile Score heavily. Otherwise, this analysis shows overall that the MDN

significantly outperformed the ccODP when it came to measuring the location and shape

of total reserves.

As mentioned earlier, the MDN’s more accurate distributional fit is due to its flexibility in

modelling complex trends in the data, as well as its ability to fit a more flexible distribution.

72

CHAPTER 5. RESULTS

Figure 5.11: A plot of the total reserve density estimates for all Datasets, R̂, with red and
green being the MDN’s and ccODP’s estimated densities, respectively. For each Dataset,
only one triangle is analysed for each plot. The black curve is the empirical density of
total reserves. The MDN provides more accurate results, except for Dataset 1

Dataset Model RMSE Quantile Score (75%) Quantile Score (99.5%)

1 MDN 113,766 43,617 7,752
1 ccODP 96,556 28,399 21,877
2 MDN 1,376,898 304,331 84,298
2 ccODP 23,965,862 6,054,221 1,210,844
3 MDN 2,449,403 1,286,303 984,280
3 ccODP 5,481,193 3,899,808 5,173,746
4 MDN 93,835,186 30,124,845 21,311,041
4 ccODP 232,944,193 56,595,285 11,319,057

Table 5.3: The RMSE, Log Score (LS) and Quantile Scores (QS) at the 75% and 99.5%
levels, calculated for total reserve estimates, R̂. The ccODP outperforms for Dataset 1,
but the MDN outperforms otherwise.

5.3 Interpretability: ResMDN

5.3.1 Overall Performance

Overall, the ResMDN successfully boosted the ccODP, capturing structure in the GLM’s

residuals, correcting them and improving the forecasting accuracy as a result. In situations

73

CHAPTER 5. RESULTS

where the ccODP’s residuals had a visible structure, the ResMDN found that structure,

corrected it to an extent and projected these corrections to the Lower Triangle, improving

the forecasting accuracy compared to the embedded ccODP. In situations where the

ccODP’s residuals had no visible structure, the ResMDN did not boost, with training

ending very early. Projections for those datasets were relatively unchanged compared to

the ccODP. These results are positive, as it indicates the ResMDN doesn’t over-fit to the

ccODP’s residuals; it’s effectively able to understand where the ccODP needs boosting

and where it doesn’t.

The ccODP’s residual for Datasets 2 and 3 had clear structure:

• The ResMDN demonstrated the ability to recognise errors in the ccODP’s central

estimates and correct them. In Dataset 2, where the claim processing speed grad-

ually increases, the ccODP assumes that claims are middle-tailed, as it assumes

homogeneity in claim development. Hence, the ccODP under-estimated claims in

early AQs and over-estimated claims later on. Figures 5.12(a) and 5.12(b) show

heatmaps of the ccODP’s residuals for Dataset 2, alongside the ResMDN’s boosting

for that Dataset. As can be seen, the ResMDN successfully understood the ccODP’s

shortcomings just mentioned, and counteracted them to an extent (visualised by

the contrasting colours). Figure 5.13 plots the central estimates of the ResMDN

and ccODP models, showing the ResMDN’s corrections producing a more accurate

forecast.

• The ResMDN also demonstrated the ability to recognise errors in the ccODP’s

volatility estimates and correct them. This is best demonstrated in Dataset 3,

where an inflation shock occurs and persists from CQ30 onwards, the ccODP visibly

under-estimates the volatility of claims beyond CQ30. The ResMDN successfully

learns this shortcoming and increases volatility estimates accordingly for that period

and in the Lower Triangle, producing more accurate mean and volatility estimates.

Figure 5.14 visualises the ResMDN’s boosting for Dataset 3. While the volatility is

over-estimated for later DQs, the dominant trend visible is the ResMDN partially

correcting volatility estimates after approximately CQ40, which is a significant

achievement.

Overall, the ResMDN outperformed or provided similar results to the ccODP in all Datasets

for the majority of triangles. Given these results, several practical considerations arose

during modelling that are worth mentioning:

• The ResMDN projected the ccODP’s residuals unreasonably in some instances. For

74

CHAPTER 5. RESULTS

(a) A heatmap of the ccODP’s residuals
(b) A heatmap of the boosting effects of the
ResMDN

Figure 5.12: Heatmaps showing the ccODP’s initial residuals in (a), calculated as µccODPi,j −
Xi,j. The ResMDN’s boosting effects, calculated as µccODPi,j − µResMDN

i,j , are shown in (b).

Dataset 2, it learned that the ccODP over-estimates claims in later AQs, so it reduces

claims, and continues that trend incorrectly in the later DQs. The ResMDN was

trained on information that indicated that the ccODP is fairly accurate in later

DQs, however, it decided to give more importance to the training data in the later

AQs indicating the the ccODP over-estimates. This issue was fixed by constraining

projections, however that shortcoming indicates that the ResMDN may project the

ccODP’s residuals unreasonably.

5.3.2 Comparison to the MDN

While the ResMDN improved or didn’t significantly change the central and distributional

fit of claims relative to the ccODP, it failed to outperform the non-embedded MDN for

any Dataset. Figure 5.13 shows the MDN providing more accurate central estimates for

Dataset 2, while Figure 5.15 produces boxplots of the MDN and ResMDN’s quantitative

out-performance relative to the ccODP for Dataset 2. The results seen in Figure 5.15

are similar for Dataset 3. Both the qualitative and quantitative results confirm that the

ResMDN under-performed the MDN. This under-performance is attributed to:

• The relevant structure in the ccODP’s residuals is embedded in fewer training points,

making projection more unstable. This was the case for Dataset 3

• The structure of residuals is harder to project; this was the case for Dataset 2. The

ccODP increasingly over-estimated claims in the later DQs, but the ResMDN didn’t

have enough data to learn the extent that the ccODP over-estimated claims. The

Rolling Origin method is a likely cause too for the ResMDN’s shortcomings in this

aspect, as some important information regarding the ccODP’s residuals was in the

75

CHAPTER 5. RESULTS

Figure 5.13: Dataset 2: Plots comparing the mean estimates of the ResMDN, MDN
and ccODP models to the empirical mean claims based on 250 simulations. The red
line represents the ResMDN’s central estimate, the green line represents the ccODP’s
central estimate, the purple line is the MDN’s estimate, while the black line represents the
empirical mean of claims. The grey area represent the Lower Triangle.

latest CQs, which the ResMDN didn’t train on.

The ResMDN’s training time was much faster than the MDN. The MDN would usually

exceed 5,000 epochs during training, while the MDN usually stopped training at 2,500

epochs. This observation confirms the findings of Gabrielli et al. (2020), who also noted

faster training times.

5.3.3 Interpretability of Results

Unlike Individual Claims Modelling or Mortality Modelling, the issue of interpretability is

less important in Loss Triangle Reserving, since results are only two-dimensional (Accident

and Development Periods) and can be visualised relatively easily in a graph or heatmap.

However, despite the simplicity of the Loss Triangle, the ResMDN’s results are significantly

influenced by the embedded GLM, the ccODP. Given that the MDN’s black box modelling

only occures on the ccODP’s residuals, the ccODP forms the backbone of the ResMDN’s

fit. Hence, the ResMDN still provides results which are more interpretable and justifiable

to stakeholders than the MDN.

76

CHAPTER 5. RESULTS

Figure 5.14: Dataset 3: Plots comparing the 25% and 75% risk margin estimates of the
ResMDN and ccODP models to the empirical margins based on 250 simulations. The red
line represents the ResMDN’s risk margin estimates, the green line represents the ccODP’s
margin estimate, while the black line represents the empirical margins. The solid lines
represent the 25% margins, while the dashed lines represent the 75% margin. The grey
area represent the Lower Triangle.

Figure 5.15: Boxplots displaying the ResMDN’s and MDN’s (%) reduction in the RMSE
and Quantile Scores relative to the ccODP over the 10 triangles run for Dataset 2. The
top right boxplot displays the MDN’s increase in the Log Score relative to the ccODP.

77

CHAPTER 6

CONCLUSION

6.1 Research Summary and Contributions

Several obstacles hindering the popularisation of Neural Networks in Loss Triangle Reserv-

ing have been identified, addressed, and mitigated in this thesis, to a significant extent.

The lack of distributional forecasting in Loss Reserving has been tackled successfully using

the Mixture Density Network. The Rolling Origin Model Validation method provides a

model testing and selection framework that assists the implementation of MDN modelling

in practice.

Successfully tackling the issues above, this thesis hopes to further popularise Neural

Networks in Loss Reserving. This thesis does not aim to replace GLMs, nor does it propose

that Neural Networks are better for Loss Reserving than all GLMs. The MDN’s predictive

power, as well as the Neural Networks implemented in the Loss Reserving Literature, are

only as good as the benchmark model used, which is the basic Chain Ladder model in the

majority of the literature.

By enhancing the applicability of Neural Networks in Loss Reserving, this thesis hopes

to advance Neural Networks as an option for reserving in practice, which will enhance

the field of Loss Reserving. Furthermore, tackling these issues facing the implementation

of Neural Networks in practice, this thesis hopes to act as a stepping stone for further

78

CHAPTER 6. CONCLUSION

work in raising Neural Networks to higher levels in the Loss Reserving field and further

unlocking their modelling potential.

6.1.1 Probabilistic forecasting of Loss Reserves using Mixture

Density Networks

There has been little focus, in the literature, on using Neural Network for Probabilistic

forecasting of Loss Reserves. This thesis developed the probabilistic forecasting power of

Neural Networks in a Loss Triangle reserving setting. This was done through implementing

the Mixture Density Network, which fits a Mixed Gaussian to the Loss data. The flexibility

of the Mixed Gaussian distribution allowed the MDN to focus its modelling power on

achieving accurate distributional forecasts of Outstanding Claims.

The MDN significantly outperformed the ccODP in distributional forecasting accuracy of

OSC. These results occurred in four different claim environments, with varying structural

complexities. The MDN successfully captured a shift in claim processing speed, an inflation

shock, and provided stable and accurate distributional forecasts with a highly volatile

dataset. These results show that the MDN model can be successfully applied to a wide

variety of Loss Triangles of different Lines of Business and company related complexities.

6.1.2 Smooth, Robust and Accurate Loss Projections

The Actuarial Neural Network literature has not focused on methodologies of splitting the

Loss Triangle into training and testing sets, which is crucial for effective model assessment

and selection. This thesis effectively partitioned the Loss Triangle using the Rolling Origin

method, which provided a comprehensive Machine Learning model testing framework,

and allowed different MDN designs to be selected based on their projection power. As a

result, the MDN applied in this thesis consistently produced smooth, robust, and accurate

Outstanding Claims projections.

6.1.3 MDN Interpretability through a ResNet Adaptation

This thesis adapts the MDN to a more practically interpretable and justifiable model, the

ResMDN. This model is also a contribution to the literature, given that MDNs haven’t

been applied to Loss Triangle Reserving in the literature. The ResMDN successfully

boosted the embedded GLM, the ccODP, yielding equal to or superior distributional

forecasts in all claim environments tested, while maintaining the ccODP backbone in its

forecasts.

79

CHAPTER 6. CONCLUSION

6.2 Limitations

• This thesis assumes that Incremental Claims, Xi,j are independent. In reality,

Incremental Claims are dependent, which will distort Total Reserve estimates.

• Only simulated data was used for modelling. While simulated data has its benefits of

more data insight, it can sometimes miss the complexities of a real insurance setting.

• Parameter error is not quantified, which is a component in quantifying prediction

error.

6.3 Further Work

• This thesis performs modelling on the Loss Triangle only. Individual Claims mod-

elling has been gaining momentum since Neural Networks have become popularised.

Individual Claims modelling analyses claims at a more granular level, allowing the

Neural Network’s modelling power to be used more effectively.

• This thesis used Mixed Gaussians only when fitting the MDN. Despite fitting Mixed

Log-Gaussians indirectly, allowing the MDN to use a wider variety of component

densities, such as Exponential, Gamma or Pareto, will increase its versatility.

• To quantify parameter error in Traditional Modelling, bootstrapping is commonly

used. Bootstrapping has been applied to Neural Networks successfully, meaning it’s

a viable approach to quantifying parameter error for Neural Networks. However,

other methods such as taking an ensemble of models run under different weight

initialisations (Lakshminarayanan et al., 2017) have found success.

80

APPENDIX A

COMPUTATIONS

A.0.1 Proof of Lemma 3.1.1

Lemma A.0.1 Let Y and X = ln(Y) be random variables. Suppose that X follows a

Mixed Gaussian distribution with parameters (α,µ,σ), such that:

fX(x) =
K∑
k=1

αkφ(x|µk, σk)

Then Y follows a Mixed Log-Gaussian distribution with parameters (α,µ,σ), such that:

fY (y) =
1

y

K∑
k=1

αkφ(ln(y)|µk, σk)

Proof:

Given that X = ln(Y), and fX(x) being calculated following Equation (A.1):

fX(x) =
K∑
k=1

αkφ(x|µk, σk) (A.1)

The following statements can be made for Y :

81

APPENDIX A. COMPUTATIONS

P (Y ≤ y) = P (ln(Y) ≤ ln(y)) (A.2)

= P (X ≤ ln(y)) (A.3)

=
K∑
k=1

αkΦ(ln(y)|µk, σk) (A.4)

Taking the differential of Equation (A.4):

dP (Y ≤ y)

dy
=

d

(∑K
k=1 αkΦ(ln(y)|µk, σk)

)
dy

(A.5)

fY (y) =
1

y

K∑
k=1

αkφ(ln(y)|µk, σk) (A.6)

Hence, Y follows a Mixed Log-Gaussian distribution with parameters (α,µ,σ). This

completes the proof.

A.1 Data Processing

A.1.1 Input Data Processing

Let X be the set {Xi,j : i+ j ≤ 41}, and let µi,X , µj,X, µLoss,X, σi,X, σj,X and σLoss,X be

the means and standard deviations of the Accident and Development quarters and the

Incremental Losses of elements in X. The Normalisation of the input variables i, j,Xi,j is

as follows:

iNorm =
i− µi,X
σi,X

jNorm =
j − µj,X
σj,X

Xi,j,Norm =
Xi,j − µLoss,X

σLoss,X

A.1.2 Processing the MDN Output

The variables iNorm and jNorm are fed into the Network, which once trained, produces the

output:

{αNormi,j ,µNormi,j ,σNormi,j } = {αNormi,j,1 , αNormi,j,2 ...αNormi,j,K , µNormi,j,1 , µNormi,j,2 ...µNormi,j,K , σNormi,j,1 , σNormi,j,2 ...σNormi,j,K }
(A.7)

82

APPENDIX A. COMPUTATIONS

These output values are used to form the distributional fit:

fX̂i,j,Norm(x) =
K∑
k=1

αNormi,j,k φ(x|µNormi,j,k , σNormi,j,k)

The MDN output parameters are scaled and shifted to produce the distributional fit on

the raw data, Xi,j, as such:

fX̂i,j(x) =
K∑
k=1

αi,j,kφ(x|µi,j,k, σi,j,k),

where

αi,j,k = αNormi,j,k , (A.8)

µi,j,k = µNormi,j,k ∗ σLoss,X + µLoss,X, (A.9)

σi,j,k = σNormi,j,k ∗ σLoss,X (A.10)

When fitting a Mixed Log-Gaussian, normalisation and re-scaling the output is done after

the Log of Xi,j is taken. To deal with 0 cells, that is instances where Xi,j = 0, Xi,j is

transformed to eZ , such that ln(Xi,j) = Z. By default, Z = 0, however in many instances

where the volatility caused by this transformation detriments the fit significantly, Z is set

to higher numbers.

A.2 ccODP Modelling

A.2.1 Fitting the ccODP

The ccODP fit is as follows:
X̂i,j

φ
∼ Poi(

AiBj

φ
)

Hence µ̂ccODPi,j = AiBj = eln(Ai)+ln(Bj). A GLM with the ”quasipoisson” family is fit,

without an intercept. The dispersion factor, φ, is constant for all Xi,j . Of the 80 parameters

fit, one will be free (Taylor and McGuire, 2016), hence B = {Bi, i = 1, 2, 3, ...40} is scaled

to have a sum of 1, such that:

• Ai 7→ Ai
∑40

j=1 Bj

• Bj 7→ Bj∑40
j=1Bj

83

APPENDIX A. COMPUTATIONS

A.2.2 Calculating Quantitative Metrics

To calculate the quantitative metrics for the ccODP fit:

Central Estimates/Volatility:

The central and standard deviation estimates of the ccODP model are calculated as such:

• E[X̂i,j] = µ̂ccODPi,j = AiBj

• V ar(X̂i,j) = φµ̂ccODPi,j = φAiBj

Log Score:

Take Ŷi,j = b(X̂i,j
φ

)c and λi,j =
AiBj
φ

. The the standard ccODP distributional assumption

is that:

Ŷi,j ∼ Poi(
AiBj

φ
) for Ŷi,j = 0, 1, 2, 3...

However, this assumption only defines X̂i,j for the values 0, φ, 2φ.... Hence, an additional

step assumes X̂i,j is uniform between the φ bins. That is, X̂i,j|((k − 1)φ < X̂i,j < kφ) ∼
U [(k − 1)φ, kφ] .

If we let y = b(x
φ
)c, then the adjusted density function for X̂i,j follows Equation (A.11):

fX̂i,j(x) =
e−λi,jλyi,j
φ ∗ y!

(A.11)

And the Log Score follows, as such:

LogScore(X̂,X) =
∑

i,j:i+j>41

ln(f(X̂i,j))

Quantile Estimates:

Following the notation introduced earlier, Ŷi,j ∼ Poi(
AiBj
φ

). Let Ŷi,j,q and X̂i,j,q be the qth

quantile estimates for Ŷi,j and X̂i,j respectively. Then the quantile estimate is calculated

following Equation (A.12):

X̂i,j,q = φ ∗ Ŷi,j,q (A.12)

A.3 Data Simulation

This section provides technical details regarding the simulation of the four Datasets. The

simulator used was SYnthETIC, develop by Avanzi et al. (2020). Unless otherwise stated,

the default parameters of the simulator were used.

84

APPENDIX A. COMPUTATIONS

A.3.1 Notation

We define the following terms:

Ni : The number of claims in Accident Quarter i

Si,r: The total size of claim r, incurred in Accident Quarter i

µR = The mean reporting delay of each claim

σR = The standard deviation of reporting delay of each claim

µS = The mean settlement delay of each claim

σS = The standard deviation of settlement delay of each claim

SIOCCi : The quarterly occurrence based Superimposed Inflation for Accident Quarter i

SIPAYc : The quarterly Superimposed Inflation for Calendar Quarter c.

A.3.2 Dataset 1

The claims are simulated with these parameters:

Ni ∼ Poi(20, 000)

S0.2
i,r ∼ N(9.5, 3)

µR = 0.493
σR
µR

= 1.92

µS = 6.58
σS
µS

= 1.02

SIOCCi = 1

SIPAYc = 1

A.3.3 Dataset 2

Two separate datasets are simulated and added to make the final table, one with short

tail claims and the other long tail claims.

Denote incremental claims from the short tail and long tail datasets as XSHORT and

XLONG, respectively. To simulate claims in XSHORT :

NSHORT
i ∼ Poi(5, 000 + 55, 000 i−1

39
)

S0.25
i,r ∼ N(9.5, 3)

µSHORTR = 0.493
σSHORTR

µSHORTR
= 1.92

µSHORTS = 6.58

85

APPENDIX A. COMPUTATIONS

σSHORTS

µSHORTS
= 1.02

SIOCCi = 1

SIPAYc = 1.03

To simulate claims in XLONG:

NLONG
i ∼ Poi(60, 000− 55, 000 i−1

39
)

S0.25
i,r ∼ N(9.5, 3)

µLONGR = 2.47
σLONGR

µLONGR
= 1.54

µLONGS = 11.74
σLONGS

µLONGS
= 0.61

SIOCCi = 1

SIPAYc = 1.03

The two datasets are added together, as such:

X = XSHORT + XLONG

A.3.4 Dataset 3

The claims are simulated according to these parameters:

Ni ∼ Poi(60, 000)

S0.25
i,r ∼ N(9.5, 3)

µR = 2.47
σR
µR

= 1.54

µS = 11.74
σS
µS

= 0.61

SIOCCi = 1

SIPAYc = 1 ∗ (1(c < 30)) + 1.08 ∗ (1(c ≥ 30))

A.3.5 Dataset 4

This Dataset was simulated entirely based on the default parameters and functions in the

SynthETIC simulator.

86

APPENDIX B

RESULTS

This Section looks at other graphical results not mentioned in Section 5.

B.1 Dataset 1

This Section provides plots of the central estimates and risk margin estimates of the MDN

and ccODP models for Dataset 1.

B.1.1 Central Estimates

The central estimates of the MDN and ccODP models for Dataset 1 were very similar and

accurate, as Figure B.1 shows.

B.1.2 Risk Margins

Similarly to the centrla estimates, both models had accurate margins compared to the

empirical margins. However, the MDN over-estimates volatility for DQ1, as shown in

Figure B.2. This error does not directly hurt projection accuracy, as only DQ2 onwards is

a projection.

87

APPENDIX B. RESULTS

Figure B.1: Dataset 1 (simple claims): Plots comparing the mean estimates of the MDN
and ccODP models to the empirical mean claims based on 250 simulations. The red line
represents the MDN’s central estimate, the green line represents the ccODP’s central
estimate, while the black line represents the empirical mean of claims. The grey area
represent the Lower Triangle.

B.2 Dataset 2

This Section looks at how the MDN’s fit was improved by adding an MSE term to the

loss and directly constraining projections.

B.2.1 Adding the MSE Term

To increase the accuracy of central estimates, an MSE term was added to the Negative

Log Likelihood Loss function. Figure B.3 shows the improvement in central estimates

after this addition.

B.2.2 Constraining Projections

The MDN was over-estimating constraints in the later DQs. Hence, projections were

constrained such that central estimates for DQ35-39 had to be between 0 and 5,000. The

improvement in fit is shown in Figure B.4.

88

APPENDIX B. RESULTS

Figure B.2: Dataset 1(simple claims): Plots comparing the 25% and 75% risk margin
estimates of the MDN and ccODP models to the empirical margins based on 250 simulations.
The red line represents the MDN’s margin estimates, the green line represents the ccODP’s
margin estimate, while the black line represents the empirical margins. The solid lines
represent the 25% margins, while the dashed lines represent the 75% margin. The grey
area represent the Lower Triangle.

B.3 Dataset 3

This Section goes through the data partition undertaken for Dataset 3 (Inflation Shock)

in order to include more training data in the later Calendar Quarters.

B.3.1 Data Partition

After initial experimentation, the MDN failed to properly capture the inflation trend,

which was predicted. Since the first partition in the Rolling Origin methodology doesn’t

include much data from CQ30 onwards, it was dropped for a cross-validation methodology,

in which the validation and testing sets were chosen as follows:

• The Upper Triangle was split in half, with the first 29 CQs being in one, and the

rest in the other half.

• The validation and testing splits for Partition 1 and 2 were both 10%. Both partitions

used the entire upper triangle, as the Rolling Origin’s first partition excludes any

inflation shock data in the training and validation sets.

89

APPENDIX B. RESULTS

Figure B.3: Dataset 2 (Long to Short Claims): Plots comparing the central estimates
of the MDN after an MSE term is added to the loss function. The purple and red lines
represent the MDN trained on the NLL Loss and NLL + MSE Loss, respectively, while
the blue line represents losses. The grey area represents the Lower Triangle.

• The testing set was allocated randomly in the later half of the triangle.

• Half of the validation set was allocated randomly in the later half.

• The remaining half of the validation set was allocated randomly across the whole

Upper Triangle.

• For the second partition, all validation and testing data points in Partition 1 were set

as training points. The allocation of testing and validation points was subsequently

done as mentioned before, among non-training points.

• To fit the model on the whole dataset, the validation set was allocated similarly

to Partitions 1 ans 2, with the remaining points allocated to the training set. The

triangle was split in two different ways, to allow more coverage of the validation sets.

Figure B.5 provides a heatmap of the new partitions. As Figure B.6 shows, the new

partition was much more effective at capturing the inflation shock, since the MDN had

more training data in the shock period and therefore was better able to learn the trend.

90

APPENDIX B. RESULTS

Figure B.4: Dataset 2 (Long to Short Claims): Plots comparing the central estimates
of the MDN after projections are constrained. The purple and red lines represent the
unconstrained and constrained MDN, respectively, while the blue line represents losses.
The grey area represents the Lower Triangle.

B.4 Dataset 4

This Section provides plots of the central estimates and risk margin estimates of the MDN

and ccODP models for Dataset 4. It also outlines how the Log data was smoothed to help

the MDN provide more reasonable projections.

B.4.1 Smoothing the Log Data

Having a high number of 0 cells in the Dataset is troubling for the MDN, as it will associate

a high volatility to these areas. As Figure B.8 shows, the MDN predicted an extremely

high volatility for later DQs on the Log Data, which was also translated into a high central

estimate when the data was transformed back to its raw format. Furthermore, fitting a

mixture of Gaussian distributions assumes the data follows a continuous density, however,

having numerous 0 loss cells weakens that assumption. We tackled this problem here by

modifying the dataset being fed to the Network as such:

• Any cell (i, j), where Xi,j = 0: Xi,j 7→ e7 . The choice of e7 will elevate the 0 cells

and reduce volatility, while still allowing the MDN to recognise that these cells have

a relatively low value. At a first glance, this transformation should increase mean

91

APPENDIX B. RESULTS

(a) Partition 1 (b) Partition 2

(c) Partition 3 (d) Partition 4

Figure B.5: Heatmaps of the 4 partitions involved in training and fitting Dataset 3
(Inflation Shock). Light Green, Dark Green and Red represent the training, validation
and testing sets, respectively. The focus of this partition is to include training data in the
latest Calendar Quarters. Partition 1 and 2 are used for model selection, while Partition 3
and 4 are used for training the final model.

92

APPENDIX B. RESULTS

Figure B.6: Dataset 3 (Inflation Shock): Plots comparing the central estimates of the
MDN under the new and old data partitions. The purple and red lines represent the
MDN fit when trined under the old and new partitions, respectively, while the blue line
represents losses. The grey area represents the Lower Triangle.

estimates of claims, however, the reduction in volatility brings the mean estimate

down to more reasonable levels in later DQs.

Then, in any cell (i, j), where j ≥ 30:

• ln(Xi,j) 7→
∑3
k=0 ln(Xi,j−k)

4
. Taking the moving average as such smooths the curve in

the later DQs, reducing mean and volatility estimates.

Then, any cell (i, j), where 4 ≤ j < 30 and Xi,j = e7:

• ln(Xi,j) 7→
∑3
k=0 ln(Xi,j−k)

4
. In some datasets simulated, 0 cells were present as early

as DQ20, which lead to excessively high volatility estimates in the corresponding

region. A moving average of all data points there may distort the dataset too much,

hence the transformation was only applied to 0 cells which occurred before DQ30.

Figure B.7 provides a visualisation of the Log Incremental Claims before and after

smoothing was applied.

93

APPENDIX B. RESULTS

(a) Claims without smoothing the Log Data. (b) Claims with smoothed Log Data.

Figure B.7: Dataset 4: The comparison of Log Incremental claims when not smoothed (a)
and when smoothed (b).

B.4.2 Central Estimates

The MDN’s central estimates were, on average, slightly more accurate than the ccODP’s

estimates. Figure B.9 compares the central estimates of the two models.

B.4.3 Risk Margins

Similarly to central estimates, the MDN’s risk margin estimates were, on average, slightly

more accurate than the ccODP’s estimates. The ccODP’s margin estimates were extremely

volatile, similar to its central estimates. No structural shortcoming is visible beyond the

noise. Figure B.10 compares the risk margin estimates of the two models.

94

APPENDIX B. RESULTS

Figure B.8: Dataset 4: A comparison of the MDN fit with smoothed and non-smoothed
Log Data. The purple and red lines represent the MDN fit on non-smoothed and smoothed
data, respectively. The blue lines and black dashed lines represent the actual losses and 1
SD margin of the MDN, respectively. The grey area represents the Lower Triangle, the
forecasting region.

Figure B.9: Plots comparing the mean estimates of the MDN and ccODP models to the
empirical mean claims based on 250 simulations. The red line represents the MDN’s
central estimate, the green line represents the ccODP’s central estimate, while the black
line represents the empirical mean of claims. The grey area represent the Lower Triangle.

95

APPENDIX B. RESULTS

Figure B.10: Plots comparing the 25% and 75% risk margin estimates of the MDN
and ccODP models to the empirical margins based on 10,000 simulations. The red line
represents the MDN’s margin estimates, the green line represents the ccODP’s margin
estimate, while the black line represents the empirical margins. The solid lines represent
the 25% margins, while the dashed lines represent the 75% margin. The grey area represent
the Lower Triangle.

96

BIBLIOGRAPHY

Abreu, S., 2019. Automated architecture design for deep neural networks. arXiv preprint

arXiv:1908.10714 .

Arjas, E., 1989. The claims reserving problem in non-life insurance: Some structural ideas.

ASTIN Bulletin: The Journal of the IAA 19, 139–152.

Avanzi, B., Taylor, G., Vu, P., Wong, B., 2016. Stochastic loss reserving with dependence:

A flexible multivariate tweedie approach. Insurance Mathematics Economics 71, 63–78.

Avanzi, B., Taylor, G.C., Wang, M., Wong, B., 2020. Synthetic: an individual insurance

claim simulator with feature control. arXiv preprint arXiv:2008.05693 .

Balona, C., Richman, R., 2020. The Actuary and IBNR Techniques: a Machine Learning

Approach .

Barber, D., Bishop, C.M., 1998. Ensemble learning in bayesian neural networks. Nato

ASI Series F Computer and Systems Sciences 168, 215–238.

Baudry, M., Robert, C.Y., 2019. A machine learning approach for individual claims

reserving in insurance. Applied Stochastic Models in Business and Industry 35, 1127–

1155.

Bergmeir, C., Beńıtez, J.M., 2012. On the use of cross-validation for time series predictor

evaluation. Information Sciences 191, 192–213.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. The

Journal of Machine Learning Research 13, 281–305.

Bishop, C.M., 1994. Mixture density networks .

97

BIBLIOGRAPHY

Chen, K., Zhou, Y., Dai, F., 2015. A lstm-based method for stock returns prediction: A

case study of china stock market, in: 2015 IEEE international conference on big data

(big data), IEEE. pp. 2823–2824.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathematics

of control, signals and systems 2, 303–314.

Delong, L., Lindholm, M., Wüthrich, M.V., 2020. Collective reserving using individual

claims data. Available at SSRN .

England, P.D., Verrall, R.J., 2002. Stochastic claims reserving in general insurance. British

Actuarial Journal , 443–544.

Gabrielli, A., 2019. A neural network boosted double overdispersed poisson claims reserving

model. ASTIN Bulletin 50.

Gabrielli, A., 2020. An individual claims reserving model for reported claims. Available at

SSRN 3612930 .

Gabrielli, A., Richman, R., Wüthrich, M.V., 2020. Neural network embedding of the

over-dispersed poisson reserving model. Scandinavian Actuarial Journal 2020, 1–29.

URL: http://www.tandfonline.com/doi/abs/10.1080/03461238.2019.1633394.

Gabrielli, A., Wüthrich, M., 2018. An individual claims history simulation machine. Risks

6, 29. Publisher: Multidisciplinary Digital Publishing Institute.

Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning, in: international conference on machine learning,

pp. 1050–1059.

Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E., 2015. Peeking inside the black box:

Visualizing statistical learning with plots of individual conditional expectation. Journal

of Computational and Graphical Statistics 24, 44–65.

Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J., 2016. Lstm:

A search space odyssey. IEEE transactions on neural networks and learning systems 28,

2222–2232.

Harej, B., Gächter, R., Jamal, S., 2017. Individual claim development

with machine learning. Report of the ASTIN Working Party of the In-

ternational Actuarial Association. Available online: http://www. actuaries.

org/ASTIN/Documents/ASTIN ICDML WP Report final. pdf (accessed on 19 July

2019) .

98

http://www.tandfonline.com/doi/abs/10.1080/03461238.2019.1633394

BIBLIOGRAPHY

Hjorth, L.U., Nabney, I.T., 2000. Bayesian training of mixture density networks, in:

Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Net-

works. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New

Millennium, IEEE. pp. 455–460.

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167 .

Iso, H., Wakamiya, S., Aramaki, E., 2017. Density estimation for geolocation via convolu-

tional mixture density network. arXiv preprint arXiv:1705.02750 .

Jouko, L., Aki, V., 2001. Bayesian approach for neural networks–review and case studies.

Neural networks 14, 257–274.

Kasiviswanathan, K., Sudheer, K., 2017. Methods used for quantifying the prediction un-

certainty of artificial neural network based hydrologic models. Stochastic environmental

research and risk assessment 31, 1659–1670.

Kuo, K., 2019. Deeptriangle: A deep learning approach to loss reserving. Risks 7, 97.

Kuo, K., 2020. Individual claims forecasting with bayesian mixture density networks.

arXiv preprint arXiv:2003.02453 .

Lakshminarayanan, B., Pritzel, A., Blundell, C., 2017. Simple and scalable predictive

uncertainty estimation using deep ensembles, in: Advances in neural information

processing systems, pp. 6402–6413.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444.

Mack, T., 1993. Distribution-free calculation of the standard error of chain ladder reserve

estimates. ASTIN Bulletin: The Journal of the IAA 23, 213–225.

McGuire, G., Taylor, G., Miller, H., 2018. Self-assembling insurance claim models using

regularized regression and machine learning. Available at SSRN 3241906 .

Mulquiney, P., 2006. Artificial neural networks in insurance loss reserving, in: 9th Joint

International Conference on Information Sciences (JCIS-06), Atlantis Press.

Murray, R.E., Ryan, P.B., Reisinger, S.J., 2011. Design and validation of a data simulation

model for longitudinal healthcare data, in: AMIA Annual Symposium Proceedings,

American Medical Informatics Association. p. 1176.

Nguyen, H.D., McLachlan, G., 2019. On approximations via convolution-defined mixture

models. Communications in Statistics-Theory and Methods 48, 3945–3955.

99

BIBLIOGRAPHY

Noll, A., Salzmann, R., Wüthrich, M.V., 2020. Case study: French motor third-party

liability claims. Available at SSRN 3164764 .

Norberg, R., 1993. Prediction of outstanding liabilities in non-life insurance 1. ASTIN

Bulletin: The Journal of the IAA 23, 95–115.

Ormoneit, D., Neuneier, R., 1996. Experiments in predicting the german stock index

dax with density estimating neural networks, in: IEEE/IAFE 1996 Conference on

Computational Intelligence for Financial Engineering (CIFEr), IEEE. pp. 66–71.

Ormoneit, D., Tresp, V., 1996. Improved gaussian mixture density estimates using bayesian

penalty terms and network averaging, in: Advances in neural information processing

systems, pp. 542–548.

Poon, J.H., 2019. Penalising unexplainability in neural networks for predicting payments

per claim incurred. Risks 7, 95.

Radtke, M., Schmidt, K.D., Schnaus, A., 2016. Handbook on loss reserving. Springer.

Reed, R., Marks, R.J., 1999. Neural smithing: supervised learning in feedforward artificial

neural networks. Mit Press.

Richman, R., 2018. Ai in actuarial science. Available at SSRN 3218082 .

Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review 65, 386.

Rossouw, L., Richman, R., 2019. Using machine learning to model claims experience and

reporting delays for pricing and reserving. Available at SSRN 3465424 .

Rumelhart, D.E., Hiton, G., Williams, R., 1986. Learning representations by backpropa-

gating errors , 533–536.

Schelldorfer, J., Wüthrich, M.V., 2019. Nesting classical actuarial models into neural

networks. Available at SSRN 3320525 .

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout:

a simple way to prevent neural networks from overfitting. The journal of machine learning

research 15, 1929–1958.

Tashman, L.J., 2000. Out-of-sample tests of forecasting accuracy: an analysis and review.

International journal of forecasting 16, 437–450.

100

BIBLIOGRAPHY

Taylor, G., 2019. Loss reserving models: Granular and machine learning forms. Risks 7,

82.

Taylor, G., McGuire, G., 2004. Loss reserving with glms: a case study, in: Spring 2004

Meeting of the Casualty Actuarial Society, Colorado Springs, Colorado.

Taylor, G., McGuire, G., 2016. Stochastic loss reserving using Generalized Linear Models.

volume 3 of CAS Monograph Series. Arlington, USA: Casualty Actuarial Society.

Taylor, G.C., 2000. Loss reserving : an actuarial perspective.

Vaughan, J., Sudjianto, A., Brahimi, E., Chen, J., Nair, V.N., 2018. Explainable neural

networks based on additive index models. arXiv preprint arXiv:1806.01933 .

Vossen, J., Feron, B., Monti, A., 2018. Probabilistic forecasting of household electrical load

using artificial neural networks, in: 2018 IEEE International Conference on Probabilistic

Methods Applied to Power Systems (PMAPS), IEEE. pp. 1–6.

Wüthrich, M.V., 2018a. Machine learning in individual claims reserving. Scandinavian

Actuarial Journal 2018, 465–480.

Wüthrich, M.V., 2018b. Neural networks applied to chain–ladder reserving. European

Actuarial Journal 8, 407–436.

Wüthrich, M.V., 2019. From generalized linear models to neural networks, and back.

Available at SSRN 3491790 .

Wüthrich, M.V., Merz, M., 2008. Stochastic claims reserving methods in insurance. volume

435. John Wiley & Sons.

Wüthrich, M.V., Merz, M., 2019. Yes, we cann! ASTIN Bulletin: The Journal of the IAA

49, 1–3.

Yang, L., Shami, A., 2020. On hyperparameter optimization of machine learning algorithms:

Theory and practice. Neurocomputing 415, 295–316.

Zen, H., Senior, A., 2014. Deep mixture density networks for acoustic modeling in statistical

parametric speech synthesis, in: 2014 IEEE international conference on acoustics, speech

and signal processing (ICASSP), IEEE. pp. 3844–3848.

Zhou, J., Garrido, J., 2009. A loss reserving method based on generalized linear models.

Society of Actuaries .

101

	Introduction
	Background
	The Need to Model Outstanding Claims
	Traditional Reserving Methods
	Machine Learning Models - Neural Networks
	Motivation
	Research Aims and Contributions
	Outline of Proposal
	Literature Review
	Traditional Loss Reserving Models
	Chain Ladder Model
	Generalised Linear Models
	Neural Networks
	Feedforward Neural Networks
	Training the Network
	Neural Network Applications to Loss Reserving
	Parametric Models
	Big Data
	Residual Neural Networks - ResNet
	Review of Neural Network Applications to Loss Reserving
	Probabilistic Forecasting with Neural Networks
	Bayesian Neural Networks
	Recent Developments in Literature
	Mixture Density Networks - MDNs

	Model Validation Methodologies
	Neural Network Loss Reserving Literature
	Time Series Model Validation

	Literature Summary

	Modelling Frameworks
	Problem Formulation and Solution
	Notation

	Model Design
	Probabilistic Forecasting - Mixture Density Networks
	Density of Individual Components
	MDN Computations
	Mean, Variance and Quantile Estimates
	Interpretability - The ResMDN
	Approximating the ccODP Model through a Mixed Gaussian
	ResMDN Computations

	Model Development
	Assessing Projection Accuracy - Rolling Origin Model Validation
	Direct Projection Constraints
	Optimising Network Hyper-parameters
	Network Hyper-parameter Selection Algorithm
	Training the Network
	Fitting the Final Model

	Model Evaluation
	Benchmark - Cross-Classified Over-Dispersed Poisson Model
	Qualitative Analysis
	Quantitative Analysis
	Objectives

	Data Analysis
	Simulated vs Real Data
	Simulator: SynthETIC (2020)

	Simulated Datasets
	Dataset 1: Simple, Short Tail Claims
	Dataset 2: Shift from Long Tail to Short Tail Claims
	Dataset 3: Inflation Shock at Calendar Quarter 30
	Dataset 4: High Volatility

	Results
	Stable Forecasts - Rolling Origin Model Validation
	Probabilistic Forecasting with the Mixture Density Network
	Central Estimate Analysis
	Volatility Estimate Analysis
	Quantile Estimate Analysis
	Total Reserves

	Interpretability: ResMDN
	Overall Performance
	Comparison to the MDN
	Interpretability of Results

	Conclusion
	Research Summary and Contributions
	Probabilistic forecasting of Loss Reserves using Mixture Density Networks
	Smooth, Robust and Accurate Loss Projections
	MDN Interpretability through a ResNet Adaptation

	Limitations
	Further Work

	Computations
	Proof of Lemma 3.1.1
	Data Processing
	Input Data Processing
	Processing the MDN Output
	ccODP Modelling
	Fitting the ccODP
	Calculating Quantitative Metrics

	Data Simulation
	Notation
	Dataset 1
	Dataset 2
	Dataset 3
	Dataset 4

	Results
	Dataset 1
	Central Estimates
	Risk Margins
	Dataset 2
	Adding the MSE Term
	Constraining Projections
	Dataset 3
	Data Partition
	Dataset 4
	Smoothing the Log Data
	Central Estimates
	Risk Margins

